58,703 research outputs found

    Chinese named entity recognition using lexicalized HMMs

    Get PDF
    This paper presents a lexicalized HMM-based approach to Chinese named entity recognition (NER). To tackle the problem of unknown words, we unify unknown word identification and NER as a single tagging task on a sequence of known words. To do this, we first employ a known-word bigram-based model to segment a sentence into a sequence of known words, and then apply the uniformly lexicalized HMMs to assign each known word a proper hybrid tag that indicates its pattern in forming an entity and the category of the formed entity. Our system is able to integrate both the internal formation patterns and the surrounding contextual clues for NER under the framework of HMMs. As a result, the performance of the system can be improved without losing its efficiency in training and tagging. We have tested our system using different public corpora. The results show that lexicalized HMMs can substantially improve NER performance over standard HMMs. The results also indicate that character-based tagging (viz. the tagging based on pure single-character words) is comparable to and can even outperform the relevant known-word based tagging when a lexicalization technique is applied.postprin

    Deep Active Learning for Named Entity Recognition

    Get PDF
    Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data
    • …
    corecore