678 research outputs found

    On Interference Cancellation and Iterative Techniques

    Get PDF
    Recent research activities in the area of mobile radio communications have moved to third generation (3G) cellular systems to achieve higher quality with variable transmission rate of multimedia information. In this paper, an overview is presented of various interference cancellation and iterative detection techniques that are believed to be suitable for 3G wireless communications systems. Key concepts are space-time processing and space-division multiple access (or SDMA) techniques. SDMA techniques are possible with software antennas. Furthermore, to reduce receiver implementation complexity, iterative detection techniques are considered. A particularly attractive method uses tentative hard decisions, made on the received positions with the highest reliability, according to some criterion, and can potentially yield an important reduction in the computational requirements of an iterative receiver, with minimum penalty in error performance. A study of the tradeoffs between complexity and performance loss of iterative multiuser detection techniques is a good research topic

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance

    Cyclic Prefix-Free MC-CDMA Arrayed MIMO Communication Systems

    No full text
    The objective of this thesis is to investigate MC-CDMA MIMO systems where the antenna array geometry is taken into consideration. In most MC-CDMA systems, cyclic pre xes, which reduce the spectral e¢ ciency, are used. In order to improve the spectral efficiency, this research study is focused on cyclic pre x- free MC-CDMA MIMO architectures. Initially, space-time wireless channel models are developed by considering the spatio-temporal mechanisms of the radio channel, such as multipath propaga- tion. The spatio-temporal channel models are based on the concept of the array manifold vector, which enables the parametric modelling of the channel. The array manifold vector is extended to the multi-carrier space-time array (MC-STAR) manifold matrix which enables the use of spatio-temporal signal processing techniques. Based on the modelling, a new cyclic pre x-free MC- CDMA arrayed MIMO communication system is proposed and its performance is compared with a representative existing system. Furthermore, a MUSIC-type algorithm is then developed for the estimation of the channel parameters of the received signal. This proposed cyclic pre x-free MC-CDMA arrayed MIMO system is then extended to consider the effects of spatial diffusion in the wireless channel. Spatial diffusion is an important channel impairment which is often ignored and the failure to consider such effects leads to less than satisfactory performance. A subspace-based approach is proposed for the estimation of the channel parameters and spatial spread and reception of the desired signal. Finally, the problem of joint optimization of the transmit and receive beam- forming weights in the downlink of a cyclic pre x-free MC-CDMA arrayed MIMO communication system is investigated. A subcarrier-cooperative approach is used for the transmit beamforming so that there is greater flexibility in the allocation of channel symbols. The resulting optimization problem, with a per-antenna transmit power constraint, is solved by the Lagrange multiplier method and an iterative algorithm is proposed
    • …
    corecore