636 research outputs found

    Deep Learning based singer identification

    Full text link
    Master Universitario en Deep Learning for Audio and Video Signal ProcessingIt is known that speaker identification is a field with a lot of related research carried out but,when it comes to looking for research developed from singingvoiceinstead of speech,only a few studiescan be found. This difference in the amount of work related to both fields is mainly due to the fact that the spoken voice is simpler and contains a much narrower frequency spectrum than the singingvoice. In this way, this Master's Final Project containsa study to identify singers from their recorded songs. For thispurpose, a more sophisticated system has been developed to facethe increased complexity in the data, being able to discriminateamongsingers.As a previous step to identify the singer, and due to the scarcity of databases of singing voice in the state of the art, the present work also includes the development of an automatic way for creating anovel databaseusing Spotify’s API. The database contains information related to the musical genre,the artist and differentmusical characteristics of the 30 seconds excerpt pre-view song provided by Spotify. The files of the songs have been source separated with the network of the Spleeter application to carry out a source separation and thus be able to work with the processedfile that only contains the singingvoice of the original songs.The developed system has used different feature extractors from the current state of the art using both speech analysis techniques and techniques that are used whenmusical instruments are wanted to be identified in recordings. With these obtained features, some current state of the art classifiers have been fed based on shallow neural networks and speaker identification networks

    Singing voice analysis/synthesis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2003.Includes bibliographical references (p. 109-115).The singing voice is the oldest and most variable of musical instruments. By combining music, lyrics, and expression, the voice is able to affect us in ways that no other instrument can. As listeners, we are innately drawn to the sound of the human voice, and when present it is almost always the focal point of a musical piece. But the acoustic flexibility of the voice in intimating words, shaping phrases, and conveying emotion also makes it the most difficult instrument to model computationally. Moreover, while all voices are capable of producing the common sounds necessary for language understanding and communication, each voice possesses distinctive features independent of phonemes and words. These unique acoustic qualities are the result of a combination of innate physical factors and expressive characteristics of performance, reflecting an individual's vocal identity. A great deal of prior research has focused on speech recognition and speaker identification, but relatively little work has been performed specifically on singing. There are significant differences between speech and singing in terms of both production and perception. Traditional computational models of speech have focused on the intelligibility of language, often sacrificing sound quality for model simplicity. Such models, however, are detrimental to the goal of singing, which relies on acoustic authenticity for the non-linguistic communication of expression and emotion. These differences between speech and singing dictate that a different and specialized representation is needed to capture the sound quality and musicality most valued in singing.(cont.) This dissertation proposes an analysis/synthesis framework specifically for the singing voice that models the time-varying physical and expressive characteristics unique to an individual voice. The system operates by jointly estimating source-filter voice model parameters, representing vocal physiology, and modeling the dynamic behavior of these features over time to represent aspects of expression. This framework is demonstrated to be useful for several applications, such as singing voice coding, automatic singer identification, and voice transformation.by Youngmoo Edmund Kim.Ph.D

    The Skipping Behavior of Users of Music Streaming Services and its Relation to Musical Structure

    Full text link
    The behavior of users of music streaming services is investigated from the point of view of the temporal dimension of individual songs; specifically, the main object of the analysis is the point in time within a song at which users stop listening and start streaming another song ("skip"). The main contribution of this study is the ascertainment of a correlation between the distribution in time of skipping events and the musical structure of songs. It is also shown that such distribution is not only specific to the individual songs, but also independent of the cohort of users and, under stationary conditions, date of observation. Finally, user behavioral data is used to train a predictor of the musical structure of a song solely from its acoustic content; it is shown that the use of such data, available in large quantities to music streaming services, yields significant improvements in accuracy over the customary fashion of training this class of algorithms, in which only smaller amounts of hand-labeled data are available

    Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM)

    Get PDF
    Extraction of singing voice from music is one of the ongoing research topics in the field of speech recognition and audio analysis. In particular, this topic finds many applications in the music field, such as in determining music structure, lyrics recognition, and singer recognition. Although many studies have been conducted for the separation of voice from the background, there has been less study on singing voice in particular. In this study, efforts were made to design a new methodology to improve the separation of vocal and non-vocal components in audio clips using REPET [14]. In the newly designed method, we tried to rectify the issues encountered in the REPET method, while designing an improved repeating mask which is used to extract the non-vocal component in audio. The main reason why the REPET method was preferred over previous methods for this study is its independent nature. More specifically, the majority of existing methods for the separation of singing voice from music were constructed explicitly based on one or more assumptions

    Audio source separation techniques including novel time-frequency representation tools

    Get PDF
    The thesis explores the development of tools for audio representation with applications in Audio Source Separation and in the Music Information Retrieval (MIR) field. A novel constant Q transform was introduced, called IIR-CQT. The transform allows a flexible design and achieves low computational cost. Also, an independent development of the Fan Chirp Transform (FChT) with the focus on the representation of simultaneous sources is studied, which has several applications in the analysis of polyphonic music signals. Dierent applications are explored in the MIR field, some of them directly related with the low-level representation tools that were analyzed. One of these applications is the development of a visualization tool based in the FChT that proved to be useful for musicological analysis . The tool has been made available as an open source, freely available software. The proposed Transform has also been used to detect and track fundamental frequencies of harmonic sources in polyphonic music. Also, the information of the slope of the pitch was used to define a similarity measure between two harmonic components that are close in time. This measure helps to use clustering algorithms to track multiple sources in polyphonic music. Additionally, the FChT was used in the context of the Query by Humming application. One of the main limitations of such application is the construction of a search database. In this work, we propose an algorithm to automatically populate the database of an existing Query by Humming, with promising results. Finally, two audio source separation techniques are studied. The first one is the separation of harmonic signals based on the FChT. The second one is an application for which the fundamental frequency of the sources is assumed to be known (Score Informed Source Separation problem)

    Singing Voice Recognition for Music Information Retrieval

    Get PDF
    This thesis proposes signal processing methods for analysis of singing voice audio signals, with the objectives of obtaining information about the identity and lyrics content of the singing. Two main topics are presented, singer identification in monophonic and polyphonic music, and lyrics transcription and alignment. The information automatically extracted from the singing voice is meant to be used for applications such as music classification, sorting and organizing music databases, music information retrieval, etc. For singer identification, the thesis introduces methods from general audio classification and specific methods for dealing with the presence of accompaniment. The emphasis is on singer identification in polyphonic audio, where the singing voice is present along with musical accompaniment. The presence of instruments is detrimental to voice identification performance, and eliminating the effect of instrumental accompaniment is an important aspect of the problem. The study of singer identification is centered around the degradation of classification performance in presence of instruments, and separation of the vocal line for improving performance. For the study, monophonic singing was mixed with instrumental accompaniment at different signal-to-noise (singing-to-accompaniment) ratios and the classification process was performed on the polyphonic mixture and on the vocal line separated from the polyphonic mixture. The method for classification including the step for separating the vocals is improving significantly the performance compared to classification of the polyphonic mixtures, but not close to the performance in classifying the monophonic singing itself. Nevertheless, the results show that classification of singing voices can be done robustly in polyphonic music when using source separation. In the problem of lyrics transcription, the thesis introduces the general speech recognition framework and various adjustments that can be done before applying the methods on singing voice. The variability of phonation in singing poses a significant challenge to the speech recognition approach. The thesis proposes using phoneme models trained on speech data and adapted to singing voice characteristics for the recognition of phonemes and words from a singing voice signal. Language models and adaptation techniques are an important aspect of the recognition process. There are two different ways of recognizing the phonemes in the audio: one is alignment, when the true transcription is known and the phonemes have to be located, other one is recognition, when both transcription and location of phonemes have to be found. The alignment is, obviously, a simplified form of the recognition task. Alignment of textual lyrics to music audio is performed by aligning the phonetic transcription of the lyrics with the vocal line separated from the polyphonic mixture, using a collection of commercial songs. The word recognition is tested for transcription of lyrics from monophonic singing. The performance of the proposed system for automatic alignment of lyrics and audio is sufficient for facilitating applications such as automatic karaoke annotation or song browsing. The word recognition accuracy of the lyrics transcription from singing is quite low, but it is shown to be useful in a query-by-singing application, for performing a textual search based on the words recognized from the query. When some key words in the query are recognized, the song can be reliably identified

    Computer Models for Musical Instrument Identification

    Get PDF
    PhDA particular aspect in the perception of sound is concerned with what is commonly termed as texture or timbre. From a perceptual perspective, timbre is what allows us to distinguish sounds that have similar pitch and loudness. Indeed most people are able to discern a piano tone from a violin tone or able to distinguish different voices or singers. This thesis deals with timbre modelling. Specifically, the formant theory of timbre is the main theme throughout. This theory states that acoustic musical instrument sounds can be characterised by their formant structures. Following this principle, the central point of our approach is to propose a computer implementation for building musical instrument identification and classification systems. Although the main thrust of this thesis is to propose a coherent and unified approach to the musical instrument identification problem, it is oriented towards the development of algorithms that can be used in Music Information Retrieval (MIR) frameworks. Drawing on research in speech processing, a complete supervised system taking into account both physical and perceptual aspects of timbre is described. The approach is composed of three distinct processing layers. Parametric models that allow us to represent signals through mid-level physical and perceptual representations are considered. Next, the use of the Line Spectrum Frequencies as spectral envelope and formant descriptors is emphasised. Finally, the use of generative and discriminative techniques for building instrument and database models is investigated. Our system is evaluated under realistic recording conditions using databases of isolated notes and melodic phrases

    Temporal Feature Integration for Music Organisation

    Get PDF

    Suivi de chansons par reconnaissance automatique de parole et alignement temporel

    Get PDF
    Le suivi de partition est défini comme étant la synchronisation sur ordinateur entre une partition musicale connue et le signal sonore de l'interprète de cette partition. Dans le cas particulier de la voix chantée, il y a encore place à l'amélioration des algorithmes existants, surtout pour le suivi de partition en temps réel. L'objectif de ce projet est donc d'arriver à mettre en oeuvre un logiciel suiveur de partition robuste et en temps-réel utilisant le signal numérisé de voix chantée et le texte des chansons. Le logiciel proposé utilise à la fois plusieurs caractéristiques de la voix chantée (énergie, correspondance avec les voyelles et nombre de passages par zéro du signal) et les met en correspondance avec la partition musicale en format MusicXML. Ces caractéristiques, extraites pour chaque trame, sont alignées aux unités phonétiques de la partition. En parallèle avec cet alignement à court terme, le système ajoute un deuxième niveau d'estimation plus fiable sur la position en associant une segmentation du signal en blocs de chant à des sections chantées en continu dans la partition. La performance du système est évaluée en présentant les alignements obtenus en différé sur 3 extraits de chansons interprétés par 2 personnes différentes, un homme et une femme, en anglais et en français
    • …
    corecore