112 research outputs found

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Three-Dimensional Geometry Inference of Convex and Non-Convex Rooms using Spatial Room Impulse Responses

    Get PDF
    This thesis presents research focused on the problem of geometry inference for both convex- and non-convex-shaped rooms, through the analysis of spatial room impulse responses. Current geometry inference methods are only applicable to convex-shaped rooms, requiring between 6--78 discretely spaced measurement positions, and are only accurate under certain conditions, such as a first-order reflection for each boundary being identifiable across all, or some subset of, these measurements. This thesis proposes that by using compact microphone arrays capable of capturing spatiotemporal information, boundary locations, and hence room shape for both convex and non-convex cases, can be inferred, using only a sufficient number of measurement positions to ensure each boundary has a first-order reflection attributable to, and identifiable in, at least one measurement. To support this, three research areas are explored. Firstly, the accuracy of direction-of-arrival estimation for reflections in binaural room impulse responses is explored, using a state-of-the-art methodology based on binaural model fronted neural networks. This establishes whether a two-microphone array can produce accurate enough direction-of-arrival estimates for geometry inference. Secondly, a spherical microphone array based spatiotemporal decomposition workflow for analysing reflections in room impulse responses is explored. This establishes that simultaneously arriving reflections can be individually detected, relaxing constraints on measurement positions. Finally, a geometry inference method applicable to both convex and more complex non-convex shaped rooms is proposed. Therefore, this research expands the possible scenarios in which geometry inference can be successfully applied at a level of accuracy comparable to existing work, through the use of commonly used compact microphone arrays. Based on these results, future improvements to this approach are presented and discussed in detail

    Compressive Sensing in Communication Systems

    Get PDF

    ANÁLISIS DE LA ACÚSTICA DE SALAS MEDIANTE LA UTILIZACIÓN DE ARRAYS DE MICRÓFONOS CIRCULARES

    Full text link
    Esta tesis doctoral aborda el estudio y análisis de la acústica de salas mediante un proceso de descomposición del campo sonoro muestreado con arrays circulares de micrófonos. El comportamiento acústico de una sala teniendo en cuenta todos los factores espaciales no es algo trivial. Este problema es conocido desde la antigüedad: griegos y romanos comenzaron a cuidar las cualidades acústicas en sus construcciones arquitectónicas basándose principalmente en diseños puramente prácticos. Más tarde sería el físico Sabine y su modelo estadístico para la medida del tiempo de reverberación de salas en que daría lugar al análisis moderno de la acústica arquitectónica. En la actualidad existen múltiples y avanzados métodos de análisis basados en el estudio de las respuestas al impulso de las salas capturadas mediante la utilización de fuentes de sonido y micrófonos de precisión que han contribuido a nuevos avances y mejoras dentro de este campo de la acústica. Los métodos mas modernos propuestos recientemente utlizan arrays de micrófonos para intentar capturar el campo de forma más precisa y con todas sus características espaciales, sin embargo todavía no han sido explotados convenientemente para obtener conclusiones significativas y relevantes sobre la acústica final de salas y sus aspectos geométricos. En esta tesis se lleva a cabo una metodología de análisis de salas basada en técnicas de descomposición de onda plana y de beamforming modal. Mediante la construcción de un array circular con micrófonos cardioides, así como de la implementación de un algoritmo de deteccion de máximos locales en ecogramas basado en morfología de imagen, se obtienen, analizan y comparan la acústica de las salas (reflexiones, absorciones, etc) permitiendo extrapolar una serie de conclusiones sobre sus características, comportamiento y calidad. Los resultados obtenidos por ambos métodos de análisis se comparan para identificar las reflexiones más significativas de las salas extrayendo informaciTorres Aranda, AM. (2012). ANÁLISIS DE LA ACÚSTICA DE SALAS MEDIANTE LA UTILIZACIÓN DE ARRAYS DE MICRÓFONOS CIRCULARES [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1822

    Transient acoustic response in car cabins with localization of reflections

    Full text link
    Due to its small size and the restrictions on source and listener positions, the design of sound reproduction systems for car cabins is particularly cumbersome. In the present project the measurement of the impulse response between a single loudspeaker and a listener position, with special emphasis on the directional characteristics, will be examined. The propagation paths inside a car are very short, meaning that it is very difficult for the existing commercial measurement systems to resolve the different reflections arriving to the listener. This paper propose a first approach of an algorithm based on time difference of arrival along a measurement technique aiming at finding the reflections and their direction of arrival to the listener. To this end a circular microphone array at a known position is employed, along with Maximum-Length Sequences (MLS) measurement technique. The results are processed so as to extract the directional properties, demonstrate the physical limitations that can influence or prevent this detection in practice. Measurements were carried out in a free-field environment (anechoic chamber) making use of different panels closer around the microphone array. RESUMEN. El diseño de sistemas de reproducción de audio para cabinas de coche es especialmente complicado debido al reducido tamaño del espacio y las restricciones de los altavoces y posiciones de escucha de los ocupantes. En el presente proyecto, se examinan mediciones de la respuesta al impulso entre un altavoz y una posición de escucha con especial énfasis en las características direccionales. Los caminos de propagación de las ondas sonoras dentro de un coche son muy cortos, lo que hace difícil para los instrumentos de medida existentes en el mercado determinar las direcciones de llegada de las diferentes reflexiones que llegan a una posición de escucha. Este trabajo propone una primera aproximación de un algoritmo, basado en las diferencias temporales de llegada de una onda a diferentes puntos de medida, y una particular técnica de medida de la respuesta al impulso para obtener las direcciones de llegada de reflexiones a una posición de escucha. Para ello, se emplea una matriz circular de micrófonos en una posición conocida junto con la técnica de medida MLS (Maximum Length Sequence). Los resultados obtenidos son procesados para extraer la dirección de llegada de las reflexiones acústicas y encontrar las limitaciones que influyan en la detección de dichas reflexiones. Las mediciones se llevan a cabo en un entorno de campo libre y utilizando diferentes superficies reflectantes alrededor de la matriz de micrófonos

    Two-dimensional direction-of-arrival estimation with time-modulated arrays

    Get PDF
    Two-dimensional direction-of-arrival estimation with time-modulated array

    Some New Results on the Estimation of Sinusoids in Noise

    Get PDF

    Model-based Analysis and Processing of Speech and Audio Signals

    Get PDF

    Array signal processing algorithms for localization and equalization in complex acoustic channels

    No full text
    The reproduction of realistic soundscapes in consumer electronic applications has been a driving force behind the development of spatial audio signal processing techniques. In order to accurately reproduce or decompose a particular spatial sound field, being able to exploit or estimate the effects of the acoustic environment becomes essential. This requires both an understanding of the source of the complexity in the acoustic channel (the acoustic path between a source and a receiver) and the ability to characterize its spatial attributes. In this thesis, we explore how to exploit or overcome the effects of the acoustic channel for sound source localization and sound field reproduction. The behaviour of a typical acoustic channel can be visualized as a transformation of its free field behaviour, due to scattering and reflections off the measurement apparatus and the surfaces in a room. These spatial effects can be modelled using the solutions to the acoustic wave equation, yet the physical nature of these scatterers typically results in complex behaviour with frequency. The first half of this thesis explores how to exploit this diversity in the frequency-domain for sound source localization, a concept that has not been considered previously. We first extract down-converted subband signals from the broadband audio signal, and collate these signals, such that the spatial diversity is retained. A signal model is then developed to exploit the channel's spatial information using a signal subspace approach. We show that this concept can be applied to multi-sensor arrays on complex-shaped rigid bodies as well as the special case of binaural localization. In both c! ases, an improvement in the closely spaced source resolution is demonstrated over traditional techniques, through simulations and experiments using a KEMAR manikin. The binaural analysis further indicates that the human localization performance in certain spatial regions is limited by the lack of spatial diversity, as suggested in perceptual experiments in the literature. Finally, the possibility of exploiting known inter-subband correlated sources (e.g., speech) for localization in under-determined systems is demonstrated. The second half of this thesis considers reverberation control, where reverberation is modelled as a superposition of sound fields created by a number of spatially distributed sources. We consider the mode/wave-domain description of the sound field, and propose modelling the reverberant modes as linear transformations of the desired sound field modes. This is a novel concept, as we consider each mode transformation to be independent of other modes. This model is then extended to sound field control, and used to derive the compensation signals required at the loudspeakers to equalize the reverberation. We show that estimating the reverberant channel and controlling the sound field now becomes a single adaptive filtering problem in the mode-domain, where the modes can be adapted independently. The performance of the proposed method is compared with existing adaptive and non-adaptive sound field control techniques through simulations. Finally, it is shown that an order of magnitude reduction in the computational complexity can be achieved, while maintaining comparable performance to existing adaptive control techniques
    corecore