1,296 research outputs found

    A novel differentially private advising framework in cloud server environment

    Full text link
    Due to the rapid development of the cloud computing environment, it is widely accepted that cloud servers are important for users to improve work efficiency. Users need to know servers' capabilities and make optimal decisions on selecting the best available servers for users' tasks. We consider the process of learning servers' capabilities by users as a multiagent reinforcement learning process. The learning speed and efficiency in reinforcement learning can be improved by sharing the learning experience among learning agents which is defined as advising. However, existing advising frameworks are limited by the requirement that during advising all learning agents in a reinforcement learning environment must have exactly the same actions. To address the above limitation, this article proposes a novel differentially private advising framework for multiagent reinforcement learning. Our proposed approach can significantly improve the application of conventional advising frameworks when agents have one different action. The approach can also widen the applicable field of advising and speed up reinforcement learning by triggering more potential advising processes among agents with different actions

    A survey on cost-effective context-aware distribution of social data streams over energy-efficient data centres

    Get PDF
    Social media have emerged in the last decade as a viable and ubiquitous means of communication. The ease of user content generation within these platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges, including derivation of real-time meaningful insights from effectively gathered social information, as well as a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general. In this article we present a comprehensive survey that outlines the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centres supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. We systematize the existing literature and proceed to identify and analyse the main research points and industrial efforts in the area as far as modelling, simulation and performance evaluation are concerned

    The InfoSec Handbook

    Get PDF
    Computer scienc

    Refining the Threat Calculus of Technology Threat Avoidance Theory

    Get PDF
    The number of people using fitness devices and mobile health applications creates unprecedented amounts of health-related fitness data. In the United States, healthcare regulations do not consider the data that these devices collect as protected health information when no covered entity is involved; therefore, the law does not provide such data with the same legal protections as an individual’s health records. Thus, users must ensure that they keep their data safe from potential data breaches and malicious activities. In this study, we analyze users’ motivations to implement safeguards to protect their private health-related fitness data. To test user motivation, we issued wearable activity tracking devices and an associated online health fitness data account to students. We instructed the students about how to use the fitness device and how the device connected to the user’s phone and Web-based application. We then had them complete a survey to determine how they form their threat perceptions and other factors influencing their avoidance motivations for computer-security incidents. With the exception of safeguard cost and privacy concerns, results support a revised threat calculus in the TTAT model and the original model constructs

    Architectures and GPU-Based Parallelization for Online Bayesian Computational Statistics and Dynamic Modeling

    Get PDF
    Recent work demonstrates that coupling Bayesian computational statistics methods with dynamic models can facilitate the analysis of complex systems associated with diverse time series, including those involving social and behavioural dynamics. Particle Markov Chain Monte Carlo (PMCMC) methods constitute a particularly powerful class of Bayesian methods combining aspects of batch Markov Chain Monte Carlo (MCMC) and the sequential Monte Carlo method of Particle Filtering (PF). PMCMC can flexibly combine theory-capturing dynamic models with diverse empirical data. Online machine learning is a subcategory of machine learning algorithms characterized by sequential, incremental execution as new data arrives, which can give updated results and predictions with growing sequences of available incoming data. While many machine learning and statistical methods are adapted to online algorithms, PMCMC is one example of the many methods whose compatibility with and adaption to online learning remains unclear. In this thesis, I proposed a data-streaming solution supporting PF and PMCMC methods with dynamic epidemiological models and demonstrated several successful applications. By constructing an automated, easy-to-use streaming system, analytic applications and simulation models gain access to arriving real-time data to shorten the time gap between data and resulting model-supported insight. The well-defined architecture design emerging from the thesis would substantially expand traditional simulation models' potential by allowing such models to be offered as continually updated services. Contingent on sufficiently fast execution time, simulation models within this framework can consume the incoming empirical data in real-time and generate informative predictions on an ongoing basis as new data points arrive. In a second line of work, I investigated the platform's flexibility and capability by extending this system to support the use of a powerful class of PMCMC algorithms with dynamic models while ameliorating such algorithms' traditionally stiff performance limitations. Specifically, this work designed and implemented a GPU-enabled parallel version of a PMCMC method with dynamic simulation models. The resulting codebase readily has enabled researchers to adapt their models to the state-of-art statistical inference methods, and ensure that the computation-heavy PMCMC method can perform significant sampling between the successive arrival of each new data point. Investigating this method's impact with several realistic PMCMC application examples showed that GPU-based acceleration allows for up to 160x speedup compared to a corresponding CPU-based version not exploiting parallelism. The GPU accelerated PMCMC and the streaming processing system can complement each other, jointly providing researchers with a powerful toolset to greatly accelerate learning and securing additional insight from the high-velocity data increasingly prevalent within social and behavioural spheres. The design philosophy applied supported a platform with broad generalizability and potential for ready future extensions. The thesis discusses common barriers and difficulties in designing and implementing such systems and offers solutions to solve or mitigate them

    Complete Handbook

    Get PDF

    The InfoSec Handbook

    Get PDF
    Computer scienc

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    The Chronicle [March 26, 1998]

    Get PDF
    The Chronicle, March 26, 1998https://repository.stcloudstate.edu/chron/4314/thumbnail.jp
    • …
    corecore