46 research outputs found

    Performance Analysis of SSK-NOMA

    Full text link
    In this paper, we consider the combination between two promising techniques: space-shift keying (SSK) and non-orthogonal multiple access (NOMA) for future radio access networks. We analyze the performance of SSK-NOMA networks and provide a comprehensive analytical framework of SSK-NOMA regarding bit error probability (BEP), ergodic capacity and outage probability. It is worth pointing out all analysis also stand for conventional SIMO-NOMA networks. We derive closed-form exact average BEP (ABEP) expressions when the number of users in a resource block is equal to i.e., L=3L=3. Nevertheless, we analyze the ABEP of users when the number of users is more than i.e., L3L\geq3, and derive bit-error-rate (BER) union bound since the error propagation due to iterative successive interference canceler (SIC) makes the exact analysis intractable. Then, we analyze the achievable rate of users and derive exact ergodic capacity of the users so the ergodic sum rate of the system in closed-forms. Moreover, we provide the average outage probability of the users exactly in the closed-form. All derived expressions are validated via Monte Carlo simulations and it is proved that SSK-NOMA outperforms conventional NOMA networks in terms of all performance metrics (i.e., BER, sum rate, outage). Finally, the effect of the power allocation (PA) on the performance of SSK-NOMA networks is investigated and the optimum PA is discussed under BER and outage constraints

    Generalized space-time shift keying designed for flexible diversity-, multiplexing- and complexity-tradeoffs

    No full text
    In this paper, motivated by the recent concept of Spatial Modulation (SM), we propose a novel Generalized Space-Time Shift Keying (G-STSK) architecture, which acts as a unified Multiple-Input Multiple-Output (MIMO) framework. More specifically, our G-STSK scheme is based on the rationale that P out of Q dispersion matrices are selected and linearly combined in conjunction with the classic PSK/QAM modulation, where activating P out of Q dispersion matrices provides an implicit means of conveying information bits in addition to the classic modem. Due to its substantial flexibility, our G-STSK framework includes diverse MIMO arrangements, such as SM, Space-Shift Keying (SSK), Linear Dispersion Codes (LDCs), Space-Time Block Codes (STBCs) and Bell Lab’s Layered Space-Time (BLAST) scheme. Hence it has the potential of subsuming all of them, when flexibly adapting a set of system parameters. Moreover, we also derive the Discrete-input Continuous-output Memoryless Channel (DCMC) capacity for our G-STSK scheme, which serves as the unified capacity limit, hence quantifying the capacity of the class of MIMO arrangements. Furthermore, EXtrinsic Information Transfer (EXIT) chart analysis is used for designing our G-STSK scheme and for characterizing its iterative decoding convergence

    Space shift keying in the presence of multiple co-channel interferers

    Get PDF
    In this thesis, the performance of Space Shift Keying (SSK) Modulation, a technique for Multiple Input Multiple Output (MIMO) wireless communication systems is studied. The results are analyzed and compared assuming absence as well as presence of Co-Channel Interference (CCI). SSK Modulation is based on the concept of Spatial Modulation (SM) technique for MIMO systems. In SM, only one transmitting antenna remains in the state of action at a single point in time while others remain in sleep mode, resulting in no Inter Channel Interference (ICI). This is another reason for the increase in system performance and spectral e ciency. Unlike SM, in SSK Modulation there is no transmission of data symbols. However, the index of transmitting antenna is transmitted, resulting in advantages such as a reduction in detection complexity and hardware cost as there is no need for Amplitude Phase Modulation (APM) elements at both transmitting and receiving end. In this work, the exact analytical expression for Average Bit Error Rate (ABER) of SSK Modulation in the presence of CCI has been derived, and the same is further supported by MATLAB simulated results. The analysis with CCI is necessary because the spectral e ciency of the communication system can be improved by a reduction in the re-use factor of the co- channel; however, reducing the re-use factor also raises the co-channel interference. Performance for the systems with single as well as multiple receiving antennas has been analyzed twice considering correlated and uncorrelated Rayleigh fading channels. The asymptotic analysis results for uncorrelated Rayleigh fading channels have also been derived and compared with exact results

    Index modulation for next generation wireless communications.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.A multicarrier index modulation technique in the form of quadrature spatial modulation (QSM) orthogonal frequency division multiplexing (QSM-OFDM) is proposed, in which transmit antenna indices are employed to transmit additional bits. Monte Carlo simulation results demonstrates a 5 dB gain in signal-to-noise ratio (SNR) over other OFDM schemes. Furthermore, an analysis of the receiver computational complexity is presented. A low-complexity near-ML detector for space-time block coded (STBC) spatial modulation (STBC-SM) with cyclic structure (STBC-CSM), which demonstrate near-ML error performance and yields significant reduction in computational complexity is proposed. In addition, the union-bound theoretical framework to quantify the average bit-error probability (ABEP) of STBC-CSM is formulated and validates the Monte Carlo simulation results. The application of media-based modulation (MBM), to STBC-SM and STBC-CSM employing radio frequency (RF) mirrors, in the form of MBSTBC-SM and MBSTBC-CSM is proposed to improve the error performance. Numerical results of the proposed schemes demonstrate significant improvement in error performance when compared with STBC-CSM and STBC-SM. In addition, the analytical framework of the union-bound on the ABEP of MBSTBC-SM and MBSTBC-CSM for the ML detector is formulated and agrees well with Monte Carlo simulations. Furthermore, a low-complexity near-ML detector for MBSTBC-SM and MBSTBC-CSM is proposed, and achieves a near-ML error performance. Monte Carlo simulation results demonstrate a trade-off between the error performance and the resolution of the detector that is employed. Finally, the application of MBM, an index modulated system to spatial modulation, in the form of spatial MBM (SMBM) is investigated. SMBM employs RF mirrors located around the transmit antenna units to create distinct channel paths to the receiver. This thesis presents an easy to evaluate theoretical bound for the error performance of SMBM, which is validated by Monte Carlo simulation results. Lastly, two low-complexity suboptimal mirror activation pattern (MAP) optimization techniques are proposed, which improve the error performance of SMBM significantly

    Index Modulation-based Information Harvesting for Far-Field RF Power Transfer

    Full text link
    While wireless information transmission (WIT) is evolving into its sixth generation (6G), maintaining terminal operations that rely on limited battery capacities has become one of the most paramount challenges for Internet-of-Things (IoT) platforms. In this respect, there exists a growing interest in energy harvesting technology from ambient resources, and wireless power transfer (WPT) can be the key solution towards enabling battery-less infrastructures referred to as zero-power communication technology. Indeed, eclectic integration approaches between WPT and WIT mechanisms are becoming a vital necessity to limit the need for replacing batteries. Beyond the conventional separation between data and power components of the emitted waveforms, as in simultaneous wireless information and power transfer (SWIPT) mechanisms, a novel protocol referred to as information harvesting (IH) has recently emerged. IH leverages existing WPT mechanisms for data communication by incorporating index modulation (IM) techniques on top of the existing far-field power transfer mechanism. In this paper, a unified framework for the IM-based IH mechanisms has been presented where the feasibility of various IM techniques are evaluated based on different performance metrics. The presented results demonstrate the substantial potential to enable data communication within existing far-field WPT systems, particularly in the context of next-generation IoT wireless networks.Comment: 13 pages, 9 figure

    Simultaneous Wireless Information and Power Transfer Over KG Fading Channels

    Get PDF
    In this paper, we proposed a novel expression for the probability density function (PDF) and the cumulative density function (CDF) of the output SNR for the M-branch Selection Combining (M-SC) receiver over Generalized-K (KG) fading channels. Unlike conventional energy sources, the proposed scheme uses a Power splitter (PS) scheme at the receiver side. The received signal is split into information decoding and energy harvesting receiver with adjustable power levels. The expressions of our system consider arbitrary channel parameters and diversity branches. We analyze the proposed model and derive the closed-form expression for average SNR and average bit error rate (ABER) to evaluate the system performance. The obtained results are corroborated with the help of Monte-Carlo simulations. The effects of system parameters, such as power splitter ratio, modulation order, and shaping parameters of KG fading channels, are studied. This type of system will benefit reliable data transmission in an energy-limited scenario

    Simultaneous Wireless Information and Power Transfer Over KG Fading Channels

    Get PDF
    In this paper, we proposed a novel expression for the probability density function (PDF) and the cumulative density function (CDF) of the output SNR for the M-branch Selection Combining (M-SC) receiver over Generalized-K (KG) fading channels. Unlike conventional energy sources, the proposed scheme uses a Power splitter (PS) scheme at the receiver side. The received signal is split into information decoding and energy harvesting receiver with adjustable power levels. The expressions of our system consider arbitrary channel parameters and diversity branches. We analyze the proposed model and derive the closed-form expression for average SNR and average bit error rate (ABER) to evaluate the system performance. The obtained results are corroborated with the help of Monte-Carlo simulations. The effects of system parameters, such as power splitter ratio, modulation order, and shaping parameters of KG fading channels, are studied. This type of system will benefit reliable data transmission in an energy-limited scenario

    Spatial Modulation with Energy Detection: Diversity Analysis and Experimental Evaluation

    Full text link
    In this paper, we present a non-coherent energy detection scheme for spatial modulation (SM) systems. In particular, the use of SM is motivated by its low-complexity implementation in comparison to multiple-input multiple-output (MIMO) systems, achieved through the activation of a single antenna during transmission. Moreover, energy detection-based communications restrict the channel state information to the magnitude of the fading gains. This consideration makes the design applicable for low-cost low-powered devices since phase estimation and its associated circuitry are avoided. We derive an energy detection metric for a multi-antenna receiver based on the maximum-likelihood (ML) criterion. By considering a biased pulse amplitude modulation, we develop an analytical framework for the SM symbol error rate at high signal-to-noise ratios. Numerical results show that the diversity order is proportional to half the number of receive antennas; this result stems from having partial receiver channel knowledge. In addition, we compare the performance of the proposed scheme with that of the coherent ML receiver and show that the SM energy detector outperforms its coherent counterpart in certain scenarios, particularly when utilizing non-negative constellations. Ultimately, we implement an SM testbed using software-defined radio devices and provide experimental error rate measurements that validate our theoretical contribution.Comment: This work has been submitted to an IEEE journal for possible publicatio

    Index modulation for next-generation wireless networks.

    Get PDF
    Doctoral Degree, University of KwaZulu- Natal, Durban.The desirability of high throughput and superior system performance for multimedia services requires schemes that can achieve high spectral efficiency. However, this imposes high system/hardware complexity due to the large number of antennas required at the transmitter. This led to the development of several innovative multiple-input multiple-output (MIMO) techniques in the research community, such as generalized spatial modulation (GSM). GSM is a spatial modulation (SM) based scheme, which employs transmit antenna combinations coupled with identical symbols to convey additional information. This made the use of multiple transmit antennas possible in index modulation, improving the setback/limitation of hardware complexity experienced in the conventional MIMO and SM schemes. Furthermore, in the literature, an improved spectral efficient quadrature spatial modulation (QSM) based scheme termed generalized quadrature spatial modulation (GQSM) is proposed. In GQSM, the antennas at the transmitter are divided into groups and a unique symbol is employed across multi-active transmit antenna groups. Hence, GQSM requires less transmit antennas to achieve a high data rate when compared to its counterparts. However, GQSM requires multiple radio frequency (RF) chains, considering unique symbols are employed in each transmit antenna group. This motivates us to investigate single-symbol GQSM (SS-GQSM), which employs identical symbols across each group requiring a single RF chain. Recently, the application of RF mirrors termed media-based modulation (MBM) was introduced to the research community as a technique to enhance the spectral efficiency at a reduced hardware complexity. This motivates us to investigate MBM with single-symbol GSM to enhance its error performance and to mitigate the drawback of the requirement of multiple RF chains. In addition, link adaptation has been stated in literature as a technique, which can enhance the performance of a single-input multiple-output (SIMO)/MIMO scheme. MBM achieves a high data rate coupled with enhanced system performance. However, to the author's best knowledge, link adaptation has not been investigated with MBM. This motivates us to propose an adaptive algorithm that employs different candidate transmission modes to enhance the reliability of the SIMO system. The proposed scheme is called adaptive SIMOMBM (ASIMOMBM). Lately, two-way cooperative relaying has been proven as a spectral efficient relaying system. This technique employs two or more source nodes, which transmit information to the relay node simultaneously. Considering the advantages of GQSM stated earlier, this motivates us to investigate two-way decode-and-forward relaying for the GQSM scheme to improve the error performance of the conventional GQSM system

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision
    corecore