26,877 research outputs found

    Simultaneous wireless information and power transfer in modern communication systems

    Get PDF
    Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology is wireless power transfer where terminals harvest energy from electromagnetic radiation. Thereby, the energy may be harvested opportunistically from ambient electromagnetic sources or from sources that intentionally transmit electromagnetic energy for energy harvesting purposes. A particularly interesting and challenging scenario arises when sources perform simultaneous wireless information and power transfer (SWIPT), as strong signals not only increase power transfer but also interference. This article provides an overview of SWIPT systems with a particular focus on the hardware realization of rectenna circuits and practical techniques that achieve SWIPT in the domains of time, power, antennas, and space. The article also discusses the benefits of a potential integration of SWIPT technologies in modern communication networks in the context of resource allocation and cooperative cognitive radio networks

    A Survey on Simultaneous Wireless Information and Power Transfer

    Get PDF
    This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems

    Optimal Multiuser Scheduling Schemes for Simultaneous Wireless Information and Power Transfer

    Full text link
    In this paper, we study the downlink multiuser scheduling problem for systems with simultaneous wireless information and power transfer (SWIPT). We design optimal scheduling algorithms that maximize the long-term average system throughput under different fairness requirements, such as proportional fairness and equal throughput fairness. In particular, the algorithm designs are formulated as non-convex optimization problems which take into account the minimum required average sum harvested energy in the system. The problems are solved by using convex optimization techniques and the proposed optimization framework reveals the tradeoff between the long-term average system throughput and the sum harvested energy in multiuser systems with fairness constraints. Simulation results demonstrate that substantial performance gains can be achieved by the proposed optimization framework compared to existing suboptimal scheduling algorithms from the literature.Comment: Accepted for presentation at the European Signal Processing Conference 201

    Towards Optimal Energy Harvesting Receiver Design in MIMO Systems

    Full text link
    In this paper, we investigate a multiple-input multiple-output (MIMO) system with simultaneous information detection (ID) and energy harvesting (EH) receiver. This point-to-point system operates in the vicinity of active interfering nodes. The receiver performs power splitting where a portion of received signal undergoes analog energy harvesting circuitry. Further, the information content of the other portion is extracted after performing digital beamforming. In this MIMO system, information carrier eigen-modes are not necessarily the eigen-modes with the strongest energy level. Hence, it is beneficial to perform independent beamforming at the receiver of MIMO-P2P channel. Here, we utilize a hybrid analog/digital beamforming for the purpose of simultaneous ID and EH in such scenarios. This design, provides extra design degrees-of-freedom in eigen-mode selection for ID and EH purposes independently. Worst-case performance of this receiver structure is discussed. Finally, its benefits is compared to the classical receiver structure and the gains are highlighted

    Max-min Fair Beamforming for SWIPT Systems with Non-linear EH Model

    Full text link
    We study the beamforming design for multiuser systems with simultaneous wireless information and power transfer (SWIPT). Employing a practical non-linear energy harvesting (EH) model, the design is formulated as a non-convex optimization problem for the maximization of the minimum harvested power across several energy harvesting receivers. The proposed problem formulation takes into account imperfect channel state information (CSI) and a minimum required signal-to-interference-plus-noise ratio (SINR). The globally optimal solution of the design problem is obtained via the semidefinite programming (SDP) relaxation approach. Interestingly, we can show that at most one dedicated energy beam is needed to achieve optimality. Numerical results demonstrate that with the proposed design a significant performance gain and improved fairness can be provided to the users compared to two baseline schemes.Comment: Invited paper, IEEE VTC 2017, Fall, Toronto, Canad
    • …
    corecore