2,145 research outputs found

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    Feasibility of In-band Full-Duplex Radio Transceivers with Imperfect RF Components: Analysis and Enhanced Cancellation Algorithms

    Full text link
    In this paper we provide an overview regarding the feasibility of in-band full-duplex transceivers under imperfect RF components. We utilize results and findings from the recent research on full-duplex communications, while introducing also transmitter-induced thermal noise into the analysis. This means that the model of the RF impairments used in this paper is the most comprehensive thus far. By assuming realistic parameter values for the different transceiver components, it is shown that IQ imaging and transmitter-induced nonlinearities are the most significant sources of distortion in in-band full-duplex transceivers, in addition to linear self-interference. Motivated by this, we propose a novel augmented nonlinear digital self-interference canceller that is able to model and hence suppress all the essential transmitter imperfections jointly. This is also verified and demonstrated by extensive waveform simulations.Comment: 7 pages, presented in the CROWNCOM 2014 conferenc

    Modeling and Efficient Cancellation of Nonlinear Self-Interference in MIMO Full-Duplex Transceivers

    Full text link
    This paper addresses the modeling and digital cancellation of self-interference in in-band full-duplex (FD) transceivers with multiple transmit and receive antennas. The self-interference modeling and the proposed nonlinear spatio-temporal digital canceller structure takes into account, by design, the effects of I/Q modulator imbalances and power amplifier (PA) nonlinearities with memory, in addition to the multipath self-interference propagation channels and the analog RF cancellation stage. The proposed solution is the first cancellation technique in the literature which can handle such a self-interference scenario. It is shown by comprehensive simulations with realistic RF component parameters and with two different PA models to clearly outperform the current state-of-the-art digital self-interference cancellers, and to clearly extend the usable transmit power range.Comment: 7 pages, 5 figures. To be presented in the 2014 International Workshop on Emerging Technologies for 5G Wireless Cellular Network

    Cancellation of Power Amplifier Induced Nonlinear Self-Interference in Full-Duplex Transceivers

    Full text link
    Recently, full-duplex (FD) communications with simultaneous transmission and reception on the same channel has been proposed. The FD receiver, however, suffers from inevitable self-interference (SI) from the much more powerful transmit signal. Analogue radio-frequency (RF) and baseband, as well as digital baseband, cancellation techniques have been proposed for suppressing the SI, but so far most of the studies have failed to take into account the inherent nonlinearities of the transmitter and receiver front-ends. To fill this gap, this article proposes a novel digital nonlinear interference cancellation technique to mitigate the power amplifier (PA) induced nonlinear SI in a FD transceiver. The technique is based on modeling the nonlinear SI channel, which is comprised of the nonlinear PA, the linear multipath SI channel, and the RF SI canceller, with a parallel Hammerstein nonlinearity. Stemming from the modeling, and appropriate parameter estimation, the known transmit data is then processed with the developed nonlinear parallel Hammerstein structure and suppressed from the receiver path at digital baseband. The results illustrate that with a given IIP3 figure for the PA, the proposed technique enables higher transmit power to be used compared to existing linear SI cancellation methods. Alternatively, for a given maximum transmit power level, a lower-quality PA (i.e., lower IIP3) can be used.Comment: To appear in proceedings of the 2013 Asilomar Conference on Signals, Systems & Computer
    • …
    corecore