9,812 research outputs found

    A progressive collapse evaluation of steel structures in high temperature environment with optical fiber sensors

    Get PDF
    In the process of a progressive failure of steel structures in a post-earthquake fire, real-time assessment and prediction of structural behaviors are of paramount significance to an emergency evacuation and rescue effort. However, existing measurement technologies cannot provide the needed critical data such as large strains at high temperature. To bridge this gap, a novel optical fiber sensor network and an adaptive multi-scale finite element model (FEM) are proposed and developed in this study. The sensor network consists of long period fiber gratings (LPFG) sensors and extrinsic Fabry-Perot interferometer (EFPI) sensors or their integration. Each sensor is designed with a three-tier structure for an accurate and reliable measurement of large strains and for ease of installation. To maintain a balance between the total cost of computation and instrumentation and the accuracy in numerical simulation, a structure is divided into representative/critical components instrumented densely and the remaining components simulated computationally. The critical components and the remaining were modeled in different scales with fiber elements and beam/plate elements, respectively, so that the material behavior and load information measured from the critical components are representative to the remaining components and can be used to update the temperature distribution of the structure in real time. Sensitivity studies on the number of sensors and the initial selection of an updating temperature parameter were conducted. Both the sensor network and the FEM were validated with laboratory tests of a single-bay, one-story steel frame under simulated post-earthquake fire conditions. The validated FEM was applied to a two-bay, four-story steel building under the 1995 Kobe earthquake excitations. Based on extensive tests and analyses, the proposed sensor can measure a strain of 12% at as high as 800⁰C (1472⁰F) in temperature. Within the application range, the LPFG wavelength and the EFPI gap change linearly with the applied strain and temperature. The proposed updating criterion and algorithm in the adaptive FEM are proven to be effective. The number of sensors is sufficient in engineering applications as long as the sensors can adequately represent the material behavior of the instrumented components. The predicted structural behavior is unaffected by any change in a low temperature range and thus insensitive to the initial selection of the updating parameter --Abstract, page iii

    Optical fiber sensors: a route from University of Kent to Portugal

    Get PDF
    In this work the authors first summarily describe the main topics that were the subject of their post-graduate activity in fiber sensing at the Applied Optics Group of University of Kent in the late 1980s and early 1990s. After their return to Porto, Portugal, the know-how acquired during their stay at Kent and the collaboration paths that followed between the University of Porto and University of Kent were instrumental in the start-up and progress of optical fiber sensing activity in Portugal. The main topics addressed in this field, the description of some of the relevant developments achieved in recent years, the present situation and the guidelines for the future research and development activity in Portugal in fiber sensing will be the core of this work.info:eu-repo/semantics/publishedVersio

    Design and development of optical reflectance spectroscopy and optical coherence tomography catheters for myocardial tissue characterization

    Get PDF
    Catheter ablation therapy attempts to restore sinus rhythm in arrhythmia patients by producing site-specific tissue modification along regions which cause abnormal electrical activity. This treatment, though widely used, often requires repeat procedures to observe long-term therapeutic benefits. This limitation is driven in part by challenges faced by conventional schemes in validating lesion adequacy at the time of the procedure. Optical techniques are well-suited for the interrogation and characterization of biological tissues. In particular, optical coherence tomography (OCT) relies on coherence gating of singly-scattered light to enable high-resolution structural imaging for tissue diagnostics and procedural guidance. Alternatively, optical reflectance spectroscopy (ORS) is a point measurement technique which makes use of incoherent, multiply-scattered light to probe tissue volumes and derive important data from its optical signature. ORS relies on the fact that light-tissue interactions are regulated by absorption and scattering, which directly relate to the intrinsic tissue biochemistry and cellular organization. In this thesis, we explore the integration of these modalities into ablation catheters for obtaining procedural metrics which could be utilized to guide catheter ablation therapy. We first present the development of an accelerated computational light transport model and its application for guiding ORS catheter design. A custom ORS-integrated ablation catheter is then implemented and tested within porcine specimens in vitro. A model is proposed for real-time estimation of lesion size based on changes in spectral morphology acquired during ablation. We then fabricated custom integrated OCT M-mode RF catheters and present a model for detecting contact status based on deep convolutional neural networks trained on endomyocardial images. Additionally, we demonstrate for the first time, tracking of RF-induced lesion formation employing OCT Doppler micro-velocimetry; this response is shown to be commensurate with the degree of treatment. We further demonstrate for the first time spectroscopic tracking of kinetics related to the heme oxidation cascade during thermal treatment, which are linked to tissue denaturation. The pairing of these modalities into a single RF catheter was also validated for guiding lesion delivery in vitro and within live pigs. Finally, we conclude with a proof-of-concept demonstration of ORS as a mapping tool to guide epicardial ablation in human donor hearts. These results showcase the vast potential of ORS and OCT empowered RF catheters for aiding intraprocedural guidance of catheter ablation procedures which could be utilized alongside current practices

    Do-it-yourself: construction of a custom cDNA macroarray platform with high sensitivity and linear range

    Get PDF
    Background: Research involving gene expression profiling and clinical applications, such as diagnostics and prognostics, often require a DNA array platform that is flexibly customisable and cost-effective, but at the same time is highly sensitive and capable of accurately and reproducibly quantifying the transcriptional expression of a vast number of genes over the whole transcriptome dynamic range using low amounts of RNA sample. Hereto, a set of easy-to-implement practical optimisations to the design of cDNA-based nylon macroarrays as well as sample (33)P-labeling, hybridisation protocols and phosphor screen image processing were analysed for macroarray performance. Results: The here proposed custom macroarray platform had an absolute sensitivity as low as 50,000 transcripts and a linear range of over 5 log-orders. Its quality of identifying differentially expressed genes was at least comparable to commercially available microchips. Interestingly, the quantitative accuracy was found to correlate significantly with corresponding reversed transcriptase - quantitative PCR values, the gold standard gene expression measure (Pearson's correlation test p < 0.0001). Furthermore, the assay has low cost and input RNA requirements (0.5 mu g and less) and has a sound reproducibility. Conclusions: Results presented here, demonstrate for the first time that self-made cDNA-based nylon macroarrays can produce highly reliable gene expression data with high sensitivity and covering the entire mammalian dynamic range of mRNA abundances. Starting off from minimal amounts of unamplified total RNA per sample, a reasonable amount of samples can be assayed simultaneously for the quantitative expression of hundreds of genes in an easily customisable and cost-effective manner

    Damage monitoring in fibre reinforced mortar by combined digital image correlation and acoustic emission

    Get PDF
    International audienceThe present work aims at developing a methodology for the detection and monitoring of damage and fractures in building materials in the prospects of energetic renovation. Digital image correlation (DIC) and acoustic emission (AE) monitoring were simultaneously performed during tensile loading tests of fibre reinforced mortar samples. The full-field displacement mappings obtained by DIC revealed all ranges of cracks, from microscopic to macroscopic, and an image processing procedure was conducted as to quantify their evolution in the course of the degradation of the samples. The comparison of these measurements with the acoustic activity of the material showed a fair match in terms of quantification and localisation of damage. It is shown that after such a calibration procedure, AE monitoring can be autonomously used for the characterisation of damage and fractures at larger scales

    Texture analysis as a tool to study the kinetics of wet agglomeration processes

    Get PDF
    In this work wet granulation experiments were carried out in a planetary mixer with the aim to develop a novel analytical tool based on surface texture analysis. The evolution of a simple formulation (300 g of microcrystalline cellulose with a solid binders pre-dispersed in water) was monitored from the very beginning up to the end point and information on the kinetics of granulation as well as on the effect of liquid binder amount were collected. Agreement between texture analysis and granules particle size distribution obtained by sieving analysis was always found. The method proved to be robust enough to easily monitor the process and its use for more refined analyses on the different rate processes occurring during granulation is also suggested

    Optical mapping of neuronal activity during seizures in zebrafish

    Get PDF
    Mapping neuronal activity during the onset and propagation of epileptic seizures can provide a better understanding of the mechanisms underlying this pathology and improve our approaches to the development of new drugs. Recently, zebrafish has become an important model for studying epilepsy both in basic research and in drug discovery. Here, we employed a transgenic line with pan-neuronal expression of the genetically-encoded calcium indicator GCaMP6s to measure neuronal activity in zebrafish larvae during seizures induced by pentylenetretrazole (PTZ). With this approach, we mapped neuronal activity in different areas of the larval brain, demonstrating the high sensitivity of this method to different levels of alteration, as induced by increasing PTZ concentrations, and the rescuing effect of an anti-epileptic drug. We also present simultaneous measurements of brain and locomotor activity, as well as a high-throughput assay, demonstrating that GCaMP measurements can complement behavioural assays for the detection of subclinical epileptic seizures, thus enabling future investigations on human hypomorphic mutations and more effective drug screening methods. Notably, the methodology described here can be easily applied to the study of many human neuropathologies modelled in zebrafish, allowing a simple and yet detailed investigation of brain activity alterations associated with the pathological phenotype

    Total column CO_2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles

    Get PDF
    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO_2 and O_2 and other gases. Measured CO_2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS X_(CO_2) relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis
    corecore