5,293 research outputs found

    A Decentralized Mobile Computing Network for Multi-Robot Systems Operations

    Full text link
    Collective animal behaviors are paradigmatic examples of fully decentralized operations involving complex collective computations such as collective turns in flocks of birds or collective harvesting by ants. These systems offer a unique source of inspiration for the development of fault-tolerant and self-healing multi-robot systems capable of operating in dynamic environments. Specifically, swarm robotics emerged and is significantly growing on these premises. However, to date, most swarm robotics systems reported in the literature involve basic computational tasks---averages and other algebraic operations. In this paper, we introduce a novel Collective computing framework based on the swarming paradigm, which exhibits the key innate features of swarms: robustness, scalability and flexibility. Unlike Edge computing, the proposed Collective computing framework is truly decentralized and does not require user intervention or additional servers to sustain its operations. This Collective computing framework is applied to the complex task of collective mapping, in which multiple robots aim at cooperatively map a large area. Our results confirm the effectiveness of the cooperative strategy, its robustness to the loss of multiple units, as well as its scalability. Furthermore, the topology of the interconnecting network is found to greatly influence the performance of the collective action.Comment: Accepted for Publication in Proc. 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conferenc

    A cooperative navigation system with distributed architecture for multiple unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) have been widely used in many applications due to, among other features, their versatility, reduced operating cost, and small size. These applications increasingly demand that features related to autonomous navigation be employed, such as mapping. However, the reduced capacity of resources such as, for example, battery and hardware (memory and processing units) can hinder the development of these applications in UAVs. Thus, the collaborative use of multiple UAVs for mapping can be used as an alternative to solve this problem, with a cooperative navigation system. This system requires that individual local maps be transmitted and merged into a global map in a distributed manner. In this scenario, there are two main problems to be addressed: the transmission of maps among the UAVs and the merging of the local maps in each UAV. In this context, this work describes the design, development, and evaluation of a cooperative navigation system with distributed architecture to be used by multiple UAVs. This system uses proposed structures to store the 3D occupancy grid maps. Furthermore, maps are compressed and transmitted between UAVs using algorithms specially proposed for these purposes. Then the local 3D maps are merged in each UAV. In this map merging system, maps are processed before and merged in pairs using suitable algorithms to make them compatible with the 3D occupancy grid map data. In addition, keypoints orientation properties are obtained from potential field gradients. Some proposed filters are used to improve the parameters of the transformations among maps. To validate the proposed solution, simulations were performed in six different environments, outdoors and indoors, and with different layout characteristics. The obtained results demonstrate the effectiveness of thesystemin the construction, sharing, and merging of maps. Still, from the obtained results, the extreme complexity of map merging systems is highlighted.Os veículos aéreos não tripulados (VANTs) têm sidoamplamenteutilizados em muitas aplicações devido, entre outrosrecursos,à sua versatilidade, custo de operação e tamanho reduzidos. Essas aplicações exigem cadavez mais que recursos relacionados à navegaçãoautônoma sejam empregados,como o mapeamento. No entanto, acapacidade reduzida de recursos como, por exemplo, bateria e hardware (memória e capacidade de processamento) podem atrapalhar o desenvolvimento dessas aplicações em VANTs.Assim, o uso colaborativo de múltiplosVANTs para mapeamento pode ser utilizado como uma alternativa para resolvereste problema, criando um sistema de navegaçãocooperativo. Estesistema requer que mapas locais individuais sejam transmitidos efundidos em um mapa global de forma distribuída.Nesse cenário, há doisproblemas principais aserem abordados:a transmissão dosmapas entre os VANTs e afusão dos mapas locais em cada VANT. Nestecontexto, estatese apresentao projeto, desenvolvimento e avaliaçãode um sistema de navegação cooperativo com arquitetura distribuída para ser utilizado pormúltiplos VANTs. Este sistemausa estruturas propostas para armazenaros mapasdegradedeocupação 3D. Além disso, os mapas são compactados e transmitidos entre os VANTs usando os algoritmos propostos. Em seguida, os mapas 3D locais são fundidos em cada VANT. Neste sistemade fusão de mapas, os mapas são processados antes e juntados em pares usando algunsalgoritmos adequados para torná-los compatíveiscom os dados dos mapas da grade de ocupação 3D. Além disso, as propriedadesde orientação dos pontoschave são obtidas a partir de gradientes de campos potenciais. Alguns filtros propostos são utilizadospara melhorar as indicações dos parâmetros dastransformações entre mapas. Paravalidar a aplicação proposta, foram realizadas simulações em seis ambientes distintos, externos e internos, e com características construtivas distintas. Os resultados apresentados demonstram a efetividade do sistema na construção, compartilhamento e fusão dos mapas. Ainda, a partir dos resultados obtidos, destaca-se a extrema complexidade dos sistemas de fusão de mapas

    Low-Cost Multiple-MAV SLAM Using Open Source Software

    Get PDF
    We demonstrate a multiple micro aerial vehicle (MAV) system capable of supporting autonomous exploration and navigation in unknown environments using only a sensor commonly found in low-cost, commercially available MAVs—a front-facing monocular camera. We adapt a popular open source monocular SLAM library, ORB-SLAM, to support multiple inputs and present a system capable of effective cross-map alignment that can be theoretically generalized for use with other monocular SLAM libraries. Using our system, a single central ground control station is capable of supporting up to five MAVs simultaneously without a loss in mapping quality as compared to single-MAV ORB-SLAM. We conduct testing using both benchmark datasets and real-world trials to demonstrate the capability and real-time effectiveness

    Applications in Monocular Computer Vision using Geometry and Learning : Map Merging, 3D Reconstruction and Detection of Geometric Primitives

    Get PDF
    As the dream of autonomous vehicles moving around in our world comes closer, the problem of robust localization and mapping is essential to solve. In this inherently structured and geometric problem we also want the agents to learn from experience in a data driven fashion. How the modern Neural Network models can be combined with Structure from Motion (SfM) is an interesting research question and this thesis studies some related problems in 3D reconstruction, feature detection, SfM and map merging.In Paper I we study how a Bayesian Neural Network (BNN) performs in Semantic Scene Completion, where the task is to predict a semantic 3D voxel grid for the Field of View of a single RGBD image. We propose an extended task and evaluate the benefits of the BNN when encountering new classes at inference time. It is shown that the BNN outperforms the deterministic baseline.Papers II-­III are about detection of points, lines and planes defining a Room Layout in an RGB image. Due to the repeated textures and homogeneous colours of indoor surfaces it is not ideal to only use point features for Structure from Motion. The idea is to complement the point features by detecting a Wireframe – a connected set of line segments – which marks the intersection of planes in the Room Layout. Paper II concerns a task for detecting a Semantic Room Wireframe and implements a Neural Network model utilizing a Graph Convolutional Network module. The experiments show that the method is more flexible than previous Room Layout Estimation methods and perform better than previous Wireframe Parsing methods. Paper III takes the task closer to Room Layout Estimation by detecting a connected set of semantic polygons in an RGB image. The end­-to-­end trainable model is a combination of a Wireframe Parsing model and a Heterogeneous Graph Neural Network. We show promising results by outperforming state of the art models for Room Layout Estimation using synthetic Wireframe detections. However, the joint Wireframe and Polygon detector requires further research to compete with the state of the art models.In Paper IV we propose minimal solvers for SfM with parallel cylinders. The problem may be reduced to estimating circles in 2D and the paper contributes with theory for the two­view relative motion and two­-circle relative structure problem. Fast solvers are derived and experiments show good performance in both simulation and on real data.Papers V-­VII cover the task of map merging. That is, given a set of individually optimized point clouds with camera poses from a SfM pipeline, how can the solutions be effectively merged without completely re­solving the Structure from Motion problem? Papers V­-VI introduce an effective method for merging and shows the effectiveness through experiments of real and simulated data. Paper VII considers the matching problem for point clouds and proposes minimal solvers that allows for deformation ofeach point cloud. Experiments show that the method robustly matches point clouds with drift in the SfM solution
    corecore