100 research outputs found

    context-driven hybrid image inpainting

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 8. 김태환.Image inpainting, which is the filling-in of missing regions in an image, is one of the most important topics in the area of computer vision and image processing. The existing non-hybrid image inpainting techniques can be broadly classified into two types. One is the texture-based inpainting and the other is the structure-based inpainting. One critical drawback of those techniques is that their inpainting results are not effective for the images with a mixture of texture and structure features in terms of visual quality or processing time. However, the conventional hybrid inpainting algorithms, which aim at inpainting images with texture and structure features, do not effectively deal with the two items: (1) what is the most effective application order of the constituents? and (2) how can we extract a minimal sub-image that may contain best candidates of inpaint- ing source? In this work, we propose a new hybrid inpainting algorithm to address the two tasks fully and effectively. Precisely, our algorithm attempts to solve two key ingredients: (1) (right time) determining the best application order for inpainting textural and structural missing regions and (2) (right place) extracting the sub-image containing best candidates of source patches to be used to fill in a target region. Through experiments with diverse image test cases, it is shown that our algorithm integrating the enhancements has greatly improved the inpainting quality compared to that of the previous non-hybrid inpainting methods while even spending much shorter processing time compared to the conventional hybrid inpainting methods.Abstract i Contents ii List of Tables iv List of Figures v 1 INTRODUCTION 1 2 Exemplar-based Inpainting: Review and Enhancement 7 2.1 Preliminary: A State-of-the-Art Exemplar-based Inpainting . . . . . . 7 2.2 Context-Driven Determination of Window Sizes . . . . . . . . . . . . 10 3 The Proposed Context-Driven Hybrid Inpainting 12 3.1 OverallFlow .............................. 12 3.2 Step1:Pre-processing ......................... 14 3.3 Step2:Exemplar-basedInpainting................... 15 3.4 Step3:Diffusion-basedInpainting ................... 18 4 Experimental Results 5 Conclusion Abstract (In Korean) ................... 29 Acknowlegement ................... 30Maste

    An evaluation of partial differential equations based digital inpainting algorithms

    Get PDF
    Partial Differential equations (PDEs) have been used to model various phenomena/tasks in different scientific and engineering endeavours. This thesis is devoted to modelling image inpainting by numerical implementations of certain PDEs. The main objectives of image inpainting include reconstructing damaged parts and filling-in regions in which data/colour information are missing. Different automatic and semi-automatic approaches to image inpainting have been developed including PDE-based, texture synthesis-based, exemplar-based, and hybrid approaches. Various challenges remain unresolved in reconstructing large size missing regions and/or missing areas with highly textured surroundings. Our main aim is to address such challenges by developing new advanced schemes with particular focus on using PDEs of different orders to preserve continuity of textural and geometric information in the surrounding of missing regions. We first investigated the problem of partial colour restoration in an image region whose greyscale channel is intact. A PDE-based solution is known that is modelled as minimising total variation of gradients in the different colour channels. We extend the applicability of this model to partial inpainting in other 3-channels colour spaces (such as RGB where information is missing in any of the two colours), simply by exploiting the known linear/affine relationships between different colouring models in the derivation of a modified PDE solution obtained by using the Euler-Lagrange minimisation of the corresponding gradient Total Variation (TV). We also developed two TV models on the relations between greyscale and colour channels using the Laplacian operator and the directional derivatives of gradients. The corresponding Euler-Lagrange minimisation yields two new PDEs of different orders for partial colourisation. We implemented these solutions in both spatial and frequency domains. We measure the success of these models by evaluating known image quality measures in inpainted regions for sufficiently large datasets and scenarios. The results reveal that our schemes compare well with existing algorithms, but inpainting large regions remains a challenge. Secondly, we investigate the Total Inpainting (TI) problem where all colour channels are missing in an image region. Reviewing and implementing existing PDE-based total inpainting methods reveal that high order PDEs, applied to each colour channel separately, perform well but are influenced by the size of the region and the quantity of texture surrounding it. Here we developed a TI scheme that benefits from our partial inpainting approach and apply two PDE methods to recover the missing regions in the image. First, we extract the (Y, Cb, Cr) of the image outside the missing region, apply the above PDE methods for reconstructing the missing regions in the luminance channel (Y), and then use the colourisation method to recover the missing (Cb, Cr) colours in the region. We shall demonstrate that compared to existing TI algorithms, our proposed method (using 2 PDE methods) performs well when tested on large datasets of natural and face images. Furthermore, this helps understanding of the impact of the texture in the surrounding areas on inpainting and opens new research directions. Thirdly, we investigate existing Exemplar-Based Inpainting (EBI) methods that do not use PDEs but simultaneously propagate the texture and structure into the missing region by finding similar patches within the rest of image and copying them into the boundary of the missing region. The order of patch propagation is determined by a priority function, and the similarity is determined by matching criteria. We shall exploit recently emerging Topological Data Analysis (TDA) tools to create innovative EBI schemes, referred to as TEBI. TDA studies shapes of data/objects to quantify image texture in terms of connectivity and closeness properties of certain data landmarks. Such quantifications help determine the appropriate size of patch propagation and will be used to modify the patch propagation priority function using the geometrical properties of curvature of isophotes, and to improve the matching criteria of patches by calculating the correlation coefficients from the spatial, gradient and Laplacian domains. The performance of this TEBI method will be tested by applying it to natural dataset images, resulting in improved inpainting when compared with other EBI methods. Fourthly, the recent hybrid-based inpainting techniques are reviewed and a number of highly performing innovative hybrid techniques that combine the use of high order PDE methods with the TEBI method for the simultaneous rebuilding of the missing texture and structure regions in an image are proposed. Such a hybrid scheme first decomposes the image into texture and structure components, and then the missing regions in these components are recovered by TEBI and PDE based methods respectively. The performance of our hybrid schemes will be compared with two existing hybrid algorithms. Fifthly, we turn our attention to inpainting large missing regions, and develop an innovative inpainting scheme that uses the concept of seam carving to reduce this problem to that of inpainting a smaller size missing region that can be dealt with efficiently using the inpainting schemes developed above. Seam carving resizes images based on content-awareness of the image for both reduction and expansion without affecting those image regions that have rich information. The missing region of the seam-carved version will be recovered by the TEBI method, original image size is restored by adding the removed seams and the missing parts of the added seams are then repaired using a high order PDE inpainting scheme. The benefits of this approach in dealing with large missing regions are demonstrated. The extensive performance testing of the developed inpainting methods shows that these methods significantly outperform existing inpainting methods for such a challenging task. However, the performance is still not acceptable in recovering large missing regions in high texture and structure images, and hence we shall identify remaining challenges to be investigated in the future. We shall also extend our work by investigating recently developed deep learning based image/video colourisation, with the aim of overcoming its limitations and shortcoming. Finally, we should also describe our on-going research into using TDA to detect recently growing serious “malicious” use of inpainting to create Fake images/videos

    Image Restoration using Automatic Damaged Regions Detection and Machine Learning-Based Inpainting Technique

    Get PDF
    In this dissertation we propose two novel image restoration schemes. The first pertains to automatic detection of damaged regions in old photographs and digital images of cracked paintings. In cases when inpainting mask generation cannot be completely automatic, our detection algorithm facilitates precise mask creation, particularly useful for images containing damage that is tedious to annotate or difficult to geometrically define. The main contribution of this dissertation is the development and utilization of a new inpainting technique, region hiding, to repair a single image by training a convolutional neural network on various transformations of that image. Region hiding is also effective in object removal tasks. Lastly, we present a segmentation system for distinguishing glands, stroma, and cells in slide images, in addition to current results, as one component of an ongoing project to aid in colon cancer prognostication

    Mathematical Approaches for Image Enhancement Problems

    Get PDF
    This thesis develops novel techniques that can solve some image enhancement problems using theoretically and technically proven and very useful mathematical tools to image processing such as wavelet transforms, partial differential equations, and variational models. Three subtopics are mainly covered. First, color image denoising framework is introduced to achieve high quality denoising results by considering correlations between color components while existing denoising approaches can be plugged in flexibly. Second, a new and efficient framework for image contrast and color enhancement in the compressed wavelet domain is proposed. The proposed approach is capable of enhancing both global and local contrast and brightness as well as preserving color consistency. The framework does not require inverse transform for image enhancement since linear scale factors are directly applied to both scaling and wavelet coefficients in the compressed domain, which results in high computational efficiency. Also contaminated noise in the image can be efficiently reduced by introducing wavelet shrinkage terms adaptively in different scales. The proposed method is able to enhance a wavelet-coded image computationally efficiently with high image quality and less noise or other artifact. The experimental results show that the proposed method produces encouraging results both visually and numerically compared to some existing approaches. Finally, image inpainting problem is discussed. Literature review, psychological analysis, and challenges on image inpainting problem and related topics are described. An inpainting algorithm using energy minimization and texture mapping is proposed. Mumford-Shah energy minimization model detects and preserves edges in the inpainting domain by detecting both the main structure and the detailed edges. This approach utilizes faster hierarchical level set method and guarantees convergence independent of initial conditions. The estimated segmentation results in the inpainting domain are stored in segmentation map, which is referred by a texture mapping algorithm for filling textured regions. We also propose an inpainting algorithm using wavelet transform that can expect better global structure estimation of the unknown region in addition to shape and texture properties since wavelet transforms have been used for various image analysis problems due to its nice multi-resolution properties and decoupling characteristics

    Text-Guided Neural Image Inpainting

    Full text link
    Image inpainting task requires filling the corrupted image with contents coherent with the context. This research field has achieved promising progress by using neural image inpainting methods. Nevertheless, there is still a critical challenge in guessing the missed content with only the context pixels. The goal of this paper is to fill the semantic information in corrupted images according to the provided descriptive text. Unique from existing text-guided image generation works, the inpainting models are required to compare the semantic content of the given text and the remaining part of the image, then find out the semantic content that should be filled for missing part. To fulfill such a task, we propose a novel inpainting model named Text-Guided Dual Attention Inpainting Network (TDANet). Firstly, a dual multimodal attention mechanism is designed to extract the explicit semantic information about the corrupted regions, which is done by comparing the descriptive text and complementary image areas through reciprocal attention. Secondly, an image-text matching loss is applied to maximize the semantic similarity of the generated image and the text. Experiments are conducted on two open datasets. Results show that the proposed TDANet model reaches new state-of-the-art on both quantitative and qualitative measures. Result analysis suggests that the generated images are consistent with the guidance text, enabling the generation of various results by providing different descriptions. Codes are available at https://github.com/idealwhite/TDANetComment: ACM MM'2020 (Oral). 9 pages, 4 tables, 7 figure

    Sparse graph regularized mesh color edit propagation

    Get PDF
    Mesh color edit propagation aims to propagate the color from a few color strokes to the whole mesh, which is useful for mesh colorization, color enhancement and color editing, etc. Compared with image edit propagation, luminance information is not available for 3D mesh data, so the color edit propagation is more difficult on 3D meshes than images, with far less research carried out. This paper proposes a novel solution based on sparse graph regularization. Firstly, a few color strokes are interactively drawn by the user, and then the color will be propagated to the whole mesh by minimizing a sparse graph regularized nonlinear energy function. The proposed method effectively measures geometric similarity over shapes by using a set of complementary multiscale feature descriptors, and effectively controls color bleeding via a sparse ℓ 1 optimization rather than quadratic minimization used in existing work. The proposed framework can be applied for the task of interactive mesh colorization, mesh color enhancement and mesh color editing. Extensive qualitative and quantitative experiments show that the proposed method outperforms the state-of-the-art methods

    Understanding and advancing PDE-based image compression

    Get PDF
    This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-based codecs store only a small amount of image points and propagate their information into the unknown image areas during the decompression step. For certain classes of images, PDE-based compression can already outperform the current quasi-standard, JPEG2000. However, the reasons for this success are not yet fully understood, and PDE-based compression is still in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by analysing the interaction between efficient storage methods and image reconstruction with diffusion, we can rank PDEs according to their practical value in compression. Based on these observations, we advance PDE-based compression towards practical viability: First, we present a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-based image interpolation and a new region of interest coding algorithm represents important image areas with high accuracy. Finally, we propose a new framework for diffusion-based image colourisation that we use to build an efficient codec for colour images. Experiments on real world image databases show that our new method is qualitatively competitive to current state-of-the-art codecs.Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, partial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen. Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine probabilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen. Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer praktischen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demonstriert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenzfähigkeit dieses Verfahrens auf

    Patch-based methods for variational image processing problems

    Get PDF
    Image Processing problems are notoriously difficult. To name a few of these difficulties, they are usually ill-posed, involve a huge number of unknowns (from one to several per pixel!), and images cannot be considered as the linear superposition of a few physical sources as they contain many different scales and non-linearities. However, if one considers instead of images as a whole small blocks (or patches) inside the pictures, many of these hurdles vanish and problems become much easier to solve, at the cost of increasing again the dimensionality of the data to process. Following the seminal NL-means algorithm in 2005-2006, methods that consider only the visual correlation between patches and ignore their spatial relationship are called non-local methods. While powerful, it is an arduous task to define non-local methods without using heuristic formulations or complex mathematical frameworks. On the other hand, another powerful property has brought global image processing algorithms one step further: it is the sparsity of images in well chosen representation basis. However, this property is difficult to embed naturally in non-local methods, yielding algorithms that are usually inefficient or circonvoluted. In this thesis, we explore alternative approaches to non-locality, with the goals of i) developing universal approaches that can handle local and non-local constraints and ii) leveraging the qualities of both non-locality and sparsity. For the first point, we will see that embedding the patches of an image into a graph-based framework can yield a simple algorithm that can switch from local to non-local diffusion, which we will apply to the problem of large area image inpainting. For the second point, we will first study a fast patch preselection process that is able to group patches according to their visual content. This preselection operator will then serve as input to a social sparsity enforcing operator that will create sparse groups of jointly sparse patches, thus exploiting all the redundancies present in the data, in a simple mathematical framework. Finally, we will study the problem of reconstructing plausible patches from a few binarized measurements. We will show that this task can be achieved in the case of popular binarized image keypoints descriptors, thus demonstrating a potential privacy issue in mobile visual recognition applications, but also opening a promising way to the design and the construction of a new generation of smart cameras

    Understanding and advancing PDE-based image compression

    Get PDF
    This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-based codecs store only a small amount of image points and propagate their information into the unknown image areas during the decompression step. For certain classes of images, PDE-based compression can already outperform the current quasi-standard, JPEG2000. However, the reasons for this success are not yet fully understood, and PDE-based compression is still in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by analysing the interaction between efficient storage methods and image reconstruction with diffusion, we can rank PDEs according to their practical value in compression. Based on these observations, we advance PDE-based compression towards practical viability: First, we present a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-based image interpolation and a new region of interest coding algorithm represents important image areas with high accuracy. Finally, we propose a new framework for diffusion-based image colourisation that we use to build an efficient codec for colour images. Experiments on real world image databases show that our new method is qualitatively competitive to current state-of-the-art codecs.Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, partial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen. Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine probabilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen. Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer praktischen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demonstriert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenzfähigkeit dieses Verfahrens auf

    Methods for the Investigation of Microvascular Control of Oxygen Distribution

    Get PDF
    The purpose of this thesis was to develop tools for studying oxygen-dependent regulation of red blood cell (RBC) flow distribution in the microcirculation. At the microvascular level, arterioles dictate the distribution of oxygen (O2) carrying RBCs to downstream capillaries, a process which needs to be tightly regulated and coupled to O2 off loading from capillaries to the tissue. To investigate potential regulatory mechanisms, an O2 exchange platform was developed to manipulate the RBC hemoglobin O2 saturation (SO2) at the muscle surface while limiting the changes in SO2 to only a single capillary network. Decreasing SO2 in a single capillary network resulted in an increase in supply rate, while increasing SO2 caused a decrease in supply rate. This finding is consistent with our hypothesis that ATP released in capillaries in response to low SO2 is responsible for vasodilation of upstream arterioles to regulate blood flow. To determine whether the dynamics of ATP was fast enough to enable RBC signalling in capillaries, an in vitro microfluidic system was developed to generate a rapid decrease in RBC SO2. The feasibility of this experimental design was first tested computationally using a mathematical model that consisted of blood flow, oxygen and ATP transport as well as a model for hemoglobin binding, ATP release, ATP/luciferin/luciferase reaction and digital camera light detection. The model demonstrated that the concept was theoretically feasible and yielded important insights such as the signal sensitivity to flow rate. The model further revealed that measured light intensity levels would not be directly related to ATP concentrations, thus, care must be taken when interpreting the data. It was determined that the microfluidic device would be fabricated using soft lithography techniques that resulted in a device that differed significantly from our original theoretical design since all of the layers would be oxygen permeable except for a glass coverslip with a small opening for gas exchange between the liquid and gas channel. To optimize the geometric design of this microfluidic device, to maximize the desaturation the RBCs, a finite element model was developed. Based on this design a device was constructed. To test whether the design generated a rapid decrease in RBC SO2, a low hematocrit high SO2 RBC suspension was perfused through the device exposed to 95% N2 and 5% CO2 in the gas channel. Finally, to overcome challenges with existing approaches for measuring SO2 in the device, a novel image analysis technique using digital inpainting was developed. The inpainting approach demonstrated a rapid change in RBC SO2 at the entrance to the window, thus the microfluidic device is ready to be used to measure the dynamics of O2-dependent ATP release from RBCs. The new inpainting algorithm was also applied to in vivo video sequences where it was shown to provide more accurate SO2 measurements and to work under conditions where existing approaches fail. In summary, this thesis provides a set of in vivo, in vitro and computational tools that can be used to study the mechanisms of SO2-dependent regulation of the microvascular blood flow
    corecore