4,717 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Coded exposure photography: motion deblurring using fluttered shutter

    Get PDF
    In a conventional single-exposure photograph, moving objects or moving cameras cause motion blur. The exposure time defines a temporal box filter that smears the moving object across the image by convolution. This box filter destroys important high-frequency spatial details so that deblurring via deconvolution becomes an illposed problem. Rather than leaving the shutter open for the entire exposure duration, we ”flutter ” the camera’s shutter open and closed during the chosen exposure time with a binary pseudo-random sequence. The flutter changes the box filter to a broad-band filter that preserves high-frequency spatial details in the blurred image and the corresponding deconvolution becomes a well-posed problem. We demonstrate that manually-specified point spread functions are sufficient for several challenging cases of motionblur removal including extremely large motions, textured backgrounds and partial occluders. ACM Transactions o Graphics (TOG

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Learning to Extract a Video Sequence from a Single Motion-Blurred Image

    Full text link
    We present a method to extract a video sequence from a single motion-blurred image. Motion-blurred images are the result of an averaging process, where instant frames are accumulated over time during the exposure of the sensor. Unfortunately, reversing this process is nontrivial. Firstly, averaging destroys the temporal ordering of the frames. Secondly, the recovery of a single frame is a blind deconvolution task, which is highly ill-posed. We present a deep learning scheme that gradually reconstructs a temporal ordering by sequentially extracting pairs of frames. Our main contribution is to introduce loss functions invariant to the temporal order. This lets a neural network choose during training what frame to output among the possible combinations. We also address the ill-posedness of deblurring by designing a network with a large receptive field and implemented via resampling to achieve a higher computational efficiency. Our proposed method can successfully retrieve sharp image sequences from a single motion blurred image and can generalize well on synthetic and real datasets captured with different cameras

    Event-Based Fusion for Motion Deblurring with Cross-modal Attention

    Get PDF
    Traditional frame-based cameras inevitably suffer from motion blur due to long exposure times. As a kind of bio-inspired camera, the event camera records the intensity changes in an asynchronous way with high temporal resolution, providing valid image degradation information within the exposure time. In this paper, we rethink the event-based image deblurring problem and unfold it into an end-to-end two-stage image restoration network. To effectively fuse event and image features, we design an event-image cross-modal attention module applied at multiple levels of our network, which allows to focus on relevant features from the event branch and filter out noise. We also introduce a novel symmetric cumulative event representation specifically for image deblurring as well as an event mask gated connection between the two stages of our network which helps avoid information loss. At the dataset level, to foster event-based motion deblurring and to facilitate evaluation on challenging real-world images, we introduce the Real Event Blur (REBlur) dataset, captured with an event camera in an illumination controlled optical laboratory. Our Event Fusion Network (EFNet) sets the new state of the art in motion deblurring, surpassing both the prior best-performing image-based method and all event-based methods with public implementations on the GoPro dataset (by up to 2.47dB) and on our REBlur dataset, even in extreme blurry conditions. The code and our REBlur dataset will be made publicly available

    Event-Based Fusion for Motion Deblurring with Cross-modal Attention

    Get PDF
    Traditional frame-based cameras inevitably suffer from motion blur due to long exposure times. As a kind of bio-inspired camera, the event camera records the intensity changes in an asynchronous way with high temporal resolution, providing valid image degradation information within the exposure time. In this paper, we rethink the event-based image deblurring problem and unfold it into an end-to-end two-stage image restoration network. To effectively fuse event and image features, we design an event-image cross-modal attention module applied at multiple levels of our network, which allows to focus on relevant features from the event branch and filter out noise. We also introduce a novel symmetric cumulative event representation specifically for image deblurring as well as an event mask gated connection between the two stages of our network which helps avoid information loss. At the dataset level, to foster event-based motion deblurring and to facilitate evaluation on challenging real-world images, we introduce the Real Event Blur (REBlur) dataset, captured with an event camera in an illumination controlled optical laboratory. Our Event Fusion Network (EFNet) sets the new state of the art in motion deblurring, surpassing both the prior best-performing image-based method and all event-based methods with public implementations on the GoPro dataset (by up to 2.47dB) and on our REBlur dataset, even in extreme blurry conditions. The code and our REBlur dataset will be made publicly available
    corecore