625 research outputs found

    Simultaneous Reduced Basis Approximation of Parameterized Elliptic Eigenvalue Problems

    Get PDF
    The focus is on a model reduction framework for parameterized elliptic eigenvalue problems by a reduced basis method. In contrast to the standard single output case, one is interested in approximating several outputs simultaneously, namely a certain number of the smallest eigenvalues. For a fast and reliable evaluation of these input-output relations, we analyze a posteriori error estimators for eigenvalues. Moreover, we present different greedy strategies and study systematically their performance. Special attention needs to be paid to multiple eigenvalues whose appearance is parameter-dependent. Our methods are of particular interest for applications in vibro-acoustics

    The generalized Empirical Interpolation Method: stability theory on Hilbert spaces with an application to the Stokes equation

    Get PDF
    International audienceThe Generalized Empirical Interpolation Method (GEIM) is an extension first presented in [1] of the classical empirical interpolation method (see [2], [3], [4]) where the evaluation at interpolating points is replaced by the evaluation at interpolating continuous linear functionals on a class of Banach spaces. As outlined in [1], this allows to relax the continuity constraint in the target functions and expand the application domain. A special effort has been made in this paper to understand the concept of stability condition of the generalized interpolant (the Lebesgue constant) by relating it in the first part of the paper to an inf-sup problem in the case of Hilbert spaces. In the second part, it will be explained how GEIM can be employed to monitor in real time physical experiments by combining the acquisition of measurements from the processes with their mathematical models (parameter-dependent PDE's). This idea will be illustrated through a parameter dependent Stokes problem in which it will be shown that the pressure and velocity fields can efficiently be reconstructed with a relatively low dimension of the interpolating spaces

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Sparse Nonstationary Gabor Expansions - with Applications to Music Signals

    Get PDF

    Nearly optimal minimax estimator for high-dimensional sparse linear regression

    Full text link
    We present estimators for a well studied statistical estimation problem: the estimation for the linear regression model with soft sparsity constraints (ℓq\ell_q constraint with 0<q≤10<q\leq1) in the high-dimensional setting. We first present a family of estimators, called the projected nearest neighbor estimator and show, by using results from Convex Geometry, that such estimator is within a logarithmic factor of the optimal for any design matrix. Then by utilizing a semi-definite programming relaxation technique developed in [SIAM J. Comput. 36 (2007) 1764-1776], we obtain an approximation algorithm for computing the minimax risk for any such estimation task and also a polynomial time nearly optimal estimator for the important case of ℓ1\ell_1 sparsity constraint. Such results were only known before for special cases, despite decades of studies on this problem. We also extend the method to the adaptive case when the parameter radius is unknown.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1141 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Applied Harmonic Analysis and Sparse Approximation

    Get PDF
    Efficiently analyzing functions, in particular multivariate functions, is a key problem in applied mathematics. The area of applied harmonic analysis has a significant impact on this problem by providing methodologies both for theoretical questions and for a wide range of applications in technology and science, such as image processing. Approximation theory, in particular the branch of the theory of sparse approximations, is closely intertwined with this area with a lot of recent exciting developments in the intersection of both. Research topics typically also involve related areas such as convex optimization, probability theory, and Banach space geometry. The workshop was the continuation of a first event in 2012 and intended to bring together world leading experts in these areas, to report on recent developments, and to foster new developments and collaborations
    • …
    corecore