1,588 research outputs found

    Calibration and Sensitivity Analysis of a Stereo Vision-Based Driver Assistance System

    Get PDF
    Az http://intechweb.org/ alatti "Books" fül alatt kell rákeresni a "Stereo Vision" címre és az 1. fejezetre

    Predict Vehicle Collision by TTC From Motion Using a Single Video Camera

    Get PDF
    The objective of this paper is the instantaneous computation of time-to-collision (TTC) for potential collision only from the motion information captured with a vehicle borne camera. The contribution is the detection of dangerous events and degree directly from motion divergence in the driving video, which is also a clue used by human drivers. Both horizontal and vertical motion divergence are analyzed simultaneously in several collision sensitive zones. The video data are condensed to the motion profiles both horizontally and vertically in the lower half of the video to show motion trajectories directly as edge traces. Stable motion traces of linear feature components are obtained through filtering in the motion profiles. As a result, this avoids object recognition and sophisticated depth sensing in prior. The fine velocity computation yields reasonable TTC accuracy so that a video camera can achieve collision avoidance alone from the size changes of visual patterns. We have tested the algorithm for various roads, environments, and traffic, and shown results by visualization in the motion profiles for overall evaluation

    Robust ego-localization using monocular visual odometry

    Get PDF

    Perception for autonomous driving in urban road environment

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fusion of Data from Heterogeneous Sensors with Distributed Fields of View and Situation Evaluation for Advanced Driver Assistance Systems

    Get PDF
    In order to develop a driver assistance system for pedestrian protection, pedestrians in the environment of a truck are detected by radars and a camera and are tracked across distributed fields of view using a Joint Integrated Probabilistic Data Association filter. A robust approach for prediction of the system vehicles trajectory is presented. It serves the computation of a probabilistic collision risk based on reachable sets where different sources of uncertainty are taken into account

    TOWARDS SUSTAINABLE AUTONOMOUS VEHICLES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    Get PDF
    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle

    Lane estimation for autonomous vehicles using vision and LIDAR

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 109-114).Autonomous ground vehicles, or self-driving cars, require a high level of situational awareness in order to operate safely and eciently in real-world conditions. A system able to quickly and reliably estimate the location of the roadway and its lanes based upon local sensor data would be a valuable asset both to fully autonomous vehicles as well as driver assistance technologies. To be most useful, the system must accommodate a variety of roadways, a range of weather and lighting conditions, and highly dynamic scenes with other vehicles and moving objects. Lane estimation can be modeled as a curve estimation problem, where sensor data provides partial and noisy observations of curves. The number of curves to estimate may be initially unknown and many of the observations may be outliers and false detections (e.g., due to tree shadows or lens are). The challenge is to detect lanes when and where they exist, and to update the lane estimates as new observations are received. This thesis describes algorithms for feature detection and curve estimation, as well as a novel curve representation that permits fast and ecient estimation while rejecting outliers. Locally observed road paint and curb features are fused together in a lane estimation framework that detects and estimates all nearby travel lanes.(cont.) The system handles roads with complex geometries and makes no assumptions about the position and orientation of the vehicle with respect to the roadway. Early versions of these algorithms successfully guided a fully autonomous Land Rover LR3 through the 2007 DARPA Urban Challenge, a 90km urban race course, at speeds up to 40 km/h amidst moving traffic. We evaluate these and subsequent versions with a ground truth dataset containing manually labeled lane geometries for every moment of vehicle travel in two large and diverse datasets that include more than 300,000 images and 44km of roadway. The results illustrate the capabilities of our algorithms for robust lane estimation in the face of challenging conditions and unknown roadways.by Albert S. Huang.Ph.D
    corecore