70,939 research outputs found

    Simultaneous determination of time-dependent coefficients and heat source

    Get PDF
    This article presents a numerical solution to the inverse problems of simultaneous determination of the time-dependent coefficients and the source term in the parabolic heat equation subject to overspecified conditions of integral type. The ill-posed problems are numerically discretized using the finite-difference method. The resulting system of nonlinear equations is solved numerically using the MATLAB toolbox routine lsqnonlin applied to minimizing the nonlinear Tikhonov regularization functional subject to simple physical bounds on the variables. Numerical examples are presented to illustrate the accuracy and stability of the solution

    Reconstruction of time-dependent coefficients from heat moments

    Get PDF
    This paper investigates the inverse problems of simultaneous reconstruction of time-dependent thermal conductivity, convection or absorption coefficients in the parabolic heat equation governing transient heat and bio-heat thermal processes. Using initial and boundary conditions, as well as heat moments as over-determination conditions ensure that these inverse problems have a unique solution. However, the problems are still ill-posed since small errors in the input data cause large errors in the output solution. To overcome this instability we employ the Tikhonov regularization. A discussion of the choice of multiple regularization parameters is provided. The finite-difference method with the Crank–Nicolson scheme is employed as a direct solver. The resulting inverse problems are recast as nonlinear minimization problems and are solved using the lsqnonlin routine from the MATLAB toolbox. Numerical results are presented and discussed

    Simultaneous determination of two unknown thermal coefficients through a mushy zone model with an overspecified convective boundary condition

    Get PDF
    The simultaneous determination of two unknown thermal coefficients for a semi-infinite material under a phase-change process with a mushy zone according to the Solomon-Wilson-Alexiades model is considered. The material is assumed to be initially liquid at its melting temperature and it is considered that the solidification process begins due to a heat flux imposed at the fixed face. The associated free boundary value problem is overspecified with a convective boundary condition with the aim of the simultaneous determination of the temperature of the solid region, one of the two free boundaries of the mushy zone and two thermal coefficients among the latent heat by unit mass, the thermal conductivity, the mass density, the specific heat and the two coefficients that characterize the mushy zone. The another free boundary of the mushy zone, the bulk temperature and the heat flux and heat transfer coefficients at the fixed face are assumed to be known. According to the choice of the unknown thermal coefficients, fifteen phase-change problems arise. The study of all of them is presented and explicit formulae for the unknowns are given, beside necessary and sufficient conditions on data in order to obtain them. Formulae for the unknown thermal coefficients, with their corresponding restrictions on data, are summarized in a table.Comment: 27 pages, 1 Table, 1 Appendi

    Inverse Problems of Determining Coefficients of the Fractional Partial Differential Equations

    Full text link
    When considering fractional diffusion equation as model equation in analyzing anomalous diffusion processes, some important parameters in the model, for example, the orders of the fractional derivative or the source term, are often unknown, which requires one to discuss inverse problems to identify these physical quantities from some additional information that can be observed or measured practically. This chapter investigates several kinds of inverse coefficient problems for the fractional diffusion equation

    Mathematical computer programs: A compilation

    Get PDF
    Computer programs, routines, and subroutines for aiding engineers, scientists, and mathematicians in direct problem solving are presented. Also included is a group of items that affords the same users greater flexibility in the use of software

    Thermal conductivity measurement of liquids in a microfluidic device

    Get PDF
    A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30–50°C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced
    • …
    corecore