7,637 research outputs found

    Minimum Area Confidence Set Optimality for Simultaneous Confidence Bands for Percentiles in Linear Regression

    Full text link
    Simultaneous confidence bands (SCBs) for percentiles in linear regression are valuable tools with many applications. In this paper, we propose a novel criterion for comparing SCBs for percentiles, termed the Minimum Area Confidence Set (MACS) criterion. This criterion utilizes the area of the confidence set for the pivotal quantities, which are generated from the confidence set of the unknown parameters. Subsequently, we employ the MACS criterion to construct exact SCBs over any finite covariate intervals and to compare multiple SCBs of different forms. This approach can be used to determine the optimal SCBs. It is discovered that the area of the confidence set for the pivotal quantities of an asymmetric SCB is uniformly and can be very substantially smaller than that of the corresponding symmetric SCB. Therefore, under the MACS criterion, exact asymmetric SCBs should always be preferred. Furthermore, a new computationally efficient method is proposed to calculate the critical constants of exact SCBs for percentiles. A real data example on drug stability study is provided for illustration.Comment: 26 pages, 6 figure

    The bootstrap -A review

    Get PDF
    The bootstrap, extensively studied during the last decade, has become a powerful tool in different areas of Statistical Inference. In this work, we present the main ideas of bootstrap methodology in several contexts, citing the most relevant contributions and illustrating with examples and simulation studies some interesting aspects

    The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages

    Full text link
    The partial (ceteris paribus) effects of interest in nonlinear and interactive linear models are heterogeneous as they can vary dramatically with the underlying observed or unobserved covariates. Despite the apparent importance of heterogeneity, a common practice in modern empirical work is to largely ignore it by reporting average partial effects (or, at best, average effects for some groups). While average effects provide very convenient scalar summaries of typical effects, by definition they fail to reflect the entire variety of the heterogeneous effects. In order to discover these effects much more fully, we propose to estimate and report sorted effects -- a collection of estimated partial effects sorted in increasing order and indexed by percentiles. By construction the sorted effect curves completely represent and help visualize the range of the heterogeneous effects in one plot. They are as convenient and easy to report in practice as the conventional average partial effects. They also serve as a basis for classification analysis, where we divide the observational units into most or least affected groups and summarize their characteristics. We provide a quantification of uncertainty (standard errors and confidence bands) for the estimated sorted effects and related classification analysis, and provide confidence sets for the most and least affected groups. The derived statistical results rely on establishing key, new mathematical results on Hadamard differentiability of a multivariate sorting operator and a related classification operator, which are of independent interest. We apply the sorted effects method and classification analysis to demonstrate several striking patterns in the gender wage gap.Comment: 62 pages, 9 figures, 8 tables, includes appendix with supplementary material

    Multivariate varying coefficient model for functional responses

    Get PDF
    Motivated by recent work studying massive imaging data in the neuroimaging literature, we propose multivariate varying coefficient models (MVCM) for modeling the relation between multiple functional responses and a set of covariates. We develop several statistical inference procedures for MVCM and systematically study their theoretical properties. We first establish the weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic bias and variance, and then we derive asymptotic bias and mean integrated squared error of smoothed individual functions and their uniform convergence rate. We establish the uniform convergence rate of the estimated covariance function of the individual functions and its associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We also propose a simultaneous confidence band for each individual effect curve. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply MVCM to investigate the development of white matter diffusivities along the genu tract of the corpus callosum in a clinical study of neurodevelopment.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1045 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification

    Full text link
    We consider the high energy physics unfolding problem where the goal is to estimate the spectrum of elementary particles given observations distorted by the limited resolution of a particle detector. This important statistical inverse problem arising in data analysis at the Large Hadron Collider at CERN consists in estimating the intensity function of an indirectly observed Poisson point process. Unfolding typically proceeds in two steps: one first produces a regularized point estimate of the unknown intensity and then uses the variability of this estimator to form frequentist confidence intervals that quantify the uncertainty of the solution. In this paper, we propose forming the point estimate using empirical Bayes estimation which enables a data-driven choice of the regularization strength through marginal maximum likelihood estimation. Observing that neither Bayesian credible intervals nor standard bootstrap confidence intervals succeed in achieving good frequentist coverage in this problem due to the inherent bias of the regularized point estimate, we introduce an iteratively bias-corrected bootstrap technique for constructing improved confidence intervals. We show using simulations that this enables us to achieve nearly nominal frequentist coverage with only a modest increase in interval length. The proposed methodology is applied to unfolding the ZZ boson invariant mass spectrum as measured in the CMS experiment at the Large Hadron Collider.Comment: Published at http://dx.doi.org/10.1214/15-AOAS857 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: substantial text overlap with arXiv:1401.827
    • …
    corecore