36 research outputs found

    Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays

    Get PDF
    This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov–Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the PoincarĂ© map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown

    Télé-opération Corps Complet de Robots Humanoïdes

    Get PDF
    This thesis aims to investigate systems and tools for teleoperating a humanoid robot. Robotteleoperation is crucial to send and control robots in environments that are dangerous or inaccessiblefor humans (e.g., disaster response scenarios, contaminated environments, or extraterrestrialsites). The term teleoperation most commonly refers to direct and continuous control of a robot.In this case, the human operator guides the motion of the robot with her/his own physical motionor through some physical input device. One of the main challenges is to control the robot in a waythat guarantees its dynamical balance while trying to follow the human references. In addition,the human operator needs some feedback about the state of the robot and its work site through remotesensors in order to comprehend the situation or feel physically present at the site, producingeffective robot behaviors. Complications arise when the communication network is non-ideal. Inthis case the commands from human to robot together with the feedback from robot to human canbe delayed. These delays can be very disturbing for the human operator, who cannot teleoperatetheir robot avatar in an effective way.Another crucial point to consider when setting up a teleoperation system is the large numberof parameters that have to be tuned to effectively control the teleoperated robots. Machinelearning approaches and stochastic optimizers can be used to automate the learning of some of theparameters.In this thesis, we proposed a teleoperation system that has been tested on the humanoid robotiCub. We used an inertial-technology-based motion capture suit as input device to control thehumanoid and a virtual reality headset connected to the robot cameras to get some visual feedback.We first translated the human movements into equivalent robot ones by developping a motionretargeting approach that achieves human-likeness while trying to ensure the feasibility of thetransferred motion. We then implemented a whole-body controller to enable the robot to trackthe retargeted human motion. The controller has been later optimized in simulation to achieve agood tracking of the whole-body reference movements, by recurring to a multi-objective stochasticoptimizer, which allowed us to find robust solutions working on the real robot in few trials.To teleoperate walking motions, we implemented a higher-level teleoperation mode in whichthe user can use a joystick to send reference commands to the robot. We integrated this setting inthe teleoperation system, which allows the user to switch between the two different modes.A major problem preventing the deployment of such systems in real applications is the presenceof communication delays between the human input and the feedback from the robot: evena few hundred milliseconds of delay can irremediably disturb the operator, let alone a few seconds.To overcome these delays, we introduced a system in which a humanoid robot executescommands before it actually receives them, so that the visual feedback appears to be synchronizedto the operator, whereas the robot executed the commands in the past. To do so, the robot continuouslypredicts future commands by querying a machine learning model that is trained on pasttrajectories and conditioned on the last received commands.Cette thĂšse vise Ă  Ă©tudier des systĂšmes et des outils pour la tĂ©lĂ©-opĂ©ration d’un robot humanoĂŻde.La tĂ©lĂ©opĂ©ration de robots est cruciale pour envoyer et contrĂŽler les robots dans des environnementsdangereux ou inaccessibles pour les humains (par exemple, des scĂ©narios d’interventionen cas de catastrophe, des environnements contaminĂ©s ou des sites extraterrestres). Le terme tĂ©lĂ©opĂ©rationdĂ©signe le plus souvent le contrĂŽle direct et continu d’un robot. Dans ce cas, l’opĂ©rateurhumain guide le mouvement du robot avec son propre mouvement physique ou via un dispositifde contrĂŽle. L’un des principaux dĂ©fis est de contrĂŽler le robot de maniĂšre Ă  garantir son Ă©quilibredynamique tout en essayant de suivre les rĂ©fĂ©rences humaines. De plus, l’opĂ©rateur humain abesoin d’un retour d’information sur l’état du robot et de son site via des capteurs Ă  distance afind’apprĂ©hender la situation ou de se sentir physiquement prĂ©sent sur le site, produisant des comportementsde robot efficaces. Des complications surviennent lorsque le rĂ©seau de communicationn’est pas idĂ©al. Dans ce cas, les commandes de l’homme au robot ainsi que la rĂ©troaction du robotĂ  l’homme peuvent ĂȘtre retardĂ©es. Ces dĂ©lais peuvent ĂȘtre trĂšs gĂȘnants pour l’opĂ©rateur humain,qui ne peut pas tĂ©lĂ©-opĂ©rer efficacement son avatar robotique.Un autre point crucial Ă  considĂ©rer lors de la mise en place d’un systĂšme de tĂ©lĂ©-opĂ©rationest le grand nombre de paramĂštres qui doivent ĂȘtre rĂ©glĂ©s pour contrĂŽler efficacement les robotstĂ©lĂ©-opĂ©rĂ©s. Des approches d’apprentissage automatique et des optimiseurs stochastiques peuventĂȘtre utilisĂ©s pour automatiser l’apprentissage de certains paramĂštres.Dans cette thĂšse, nous avons proposĂ© un systĂšme de tĂ©lĂ©-opĂ©ration qui a Ă©tĂ© testĂ© sur le robothumanoĂŻde iCub. Nous avons utilisĂ© une combinaison de capture de mouvement basĂ©e sur latechnologie inertielle comme pĂ©riphĂ©rique de contrĂŽle pour l’humanoĂŻde et un casque de rĂ©alitĂ©virtuelle connectĂ© aux camĂ©ras du robot pour obtenir un retour visuel. Nous avons d’abord traduitles mouvements humains en mouvements robotiques Ă©quivalents en dĂ©veloppant une approchede retargeting de mouvement qui atteint la ressemblance humaine tout en essayant d’assurer lafaisabilitĂ© du mouvement transfĂ©rĂ©. Nous avons ensuite implĂ©mentĂ© un contrĂŽleur du corps entierpour permettre au robot de suivre le mouvement humain reciblĂ©. Le contrĂŽleur a ensuite Ă©tĂ©optimisĂ© en simulation pour obtenir un bon suivi des mouvements de rĂ©fĂ©rence du corps entier,en recourant Ă  un optimiseur stochastique multi-objectifs, ce qui nous a permis de trouver dessolutions robustes fonctionnant sur le robot rĂ©el en quelques essais.Pour tĂ©lĂ©-opĂ©rer les mouvements de marche, nous avons implĂ©mentĂ© un mode de tĂ©lĂ©-opĂ©rationde niveau supĂ©rieur dans lequel l’utilisateur peut utiliser un joystick pour envoyer des commandesde rĂ©fĂ©rence au robot. Nous avons intĂ©grĂ© ce paramĂštre dans le systĂšme de tĂ©lĂ©-opĂ©ration, ce quipermet Ă  l’utilisateur de basculer entre les deux modes diffĂ©rents.Un problĂšme majeur empĂȘchant le dĂ©ploiement de tels systĂšmes dans des applications rĂ©ellesest la prĂ©sence de retards de communication entre l’entrĂ©e humaine et le retour du robot: mĂȘmequelques centaines de millisecondes de retard peuvent irrĂ©mĂ©diablement perturber l’opĂ©rateur,encore plus quelques secondes. Pour surmonter ces retards, nous avons introduit un systĂšme danslequel un robot humanoĂŻde exĂ©cute des commandes avant de les recevoir, de sorte que le retourvisuel semble ĂȘtre synchronisĂ© avec l’opĂ©rateur, alors que le robot exĂ©cutait les commandes dansle passĂ©. Pour ce faire, le robot prĂ©dit en permanence les commandes futures en interrogeant unmodĂšle d’apprentissage automatique formĂ© sur les trajectoires passĂ©es et conditionnĂ© aux derniĂšrescommandes reçues

    Integral admittance shaping: A unified framework for active exoskeleton control

    Full text link
    © 2015 Elsevier B.V. Current strategies for lower-limb exoskeleton control include motion intent estimation, which is subject to inaccuracies in muscle torque estimation as well as modeling error. Approaches that rely on the phases of a uniform gait cycle have proven effective, but lack flexibility to aid other kinds of movement. This research aims at developing a more versatile control that can assist the lower limbs independently of the movement attempted. Our control strategy is based on modifying the dynamic response of the human limbs, specifically their mechanical admittance. Increasing the admittance makes the lower limbs more responsive to any muscle torque generated by the human user. We present Integral Admittance Shaping, a unified mathematical framework for: (a) determining the desired dynamic response of the coupled system formed by the human limb and the exoskeleton, and (b) synthesizing an exoskeleton controller capable of achieving said response. The present control formulation focuses on single degree-of-freedom exoskeleton devices providing performance augmentation. The algorithm generates a desired shape for the frequency response magnitude of the integral admittance (torque-to-angle relationship) of the coupled system. Simultaneously, it generates an optimal feedback controller capable of achieving the desired response while guaranteeing coupled stability and passivity. The potential effects of the exoskeleton's assistance are motion amplification for the same joint torque, and torque reduction for the same joint motion. The robustness of the derived exoskeleton controllers to parameter uncertainties is analyzed and discussed. Results from initial trials using the controller on an experimental exoskeleton are presented as well

    Towards Naturalistic Interfaces of Virtual Reality Systems

    Get PDF
    Interaction plays a key role in achieving realistic experience in virtual reality (VR). Its realization depends on interpreting the intents of human motions to give inputs to VR systems. Thus, understanding human motion from the computational perspective is essential to the design of naturalistic interfaces for VR. This dissertation studied three types of human motions, including locomotion (walking), head motion and hand motion in the context of VR. For locomotion, the dissertation presented a machine learning approach for developing a mechanical repositioning technique based on a 1-D treadmill for interacting with a unique new large-scale projective display, called the Wide-Field Immersive Stereoscopic Environment (WISE). The usability of the proposed approach was assessed through a novel user study that asked participants to pursue a rolling ball at variable speed in a virtual scene. In addition, the dissertation studied the role of stereopsis in avoiding virtual obstacles while walking by asking participants to step over obstacles and gaps under both stereoscopic and non-stereoscopic viewing conditions in VR experiments. In terms of head motion, the dissertation presented a head gesture interface for interaction in VR that recognizes real-time head gestures on head-mounted displays (HMDs) using Cascaded Hidden Markov Models. Two experiments were conducted to evaluate the proposed approach. The first assessed its offline classification performance while the second estimated the latency of the algorithm to recognize head gestures. The dissertation also conducted a user study that investigated the effects of visual and control latency on teleoperation of a quadcopter using head motion tracked by a head-mounted display. As part of the study, a method for objectively estimating the end-to-end latency in HMDs was presented. For hand motion, the dissertation presented an approach that recognizes dynamic hand gestures to implement a hand gesture interface for VR based on a static head gesture recognition algorithm. The proposed algorithm was evaluated offline in terms of its classification performance. A user study was conducted to compare the performance and the usability of the head gesture interface, the hand gesture interface and a conventional gamepad interface for answering Yes/No questions in VR. Overall, the dissertation has two main contributions towards the improvement of naturalism of interaction in VR systems. Firstly, the interaction techniques presented in the dissertation can be directly integrated into existing VR systems offering more choices for interaction to end users of VR technology. Secondly, the results of the user studies of the presented VR interfaces in the dissertation also serve as guidelines to VR researchers and engineers for designing future VR systems

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude
    corecore