1,454 research outputs found

    Approaches Toward Combining Positron Emission Tomography with Magnetic Resonance Imaging

    Get PDF
    Positron emission tomography (PET) and magnetic resonance imaging (MRI) provide complementary information, and there has been a great deal of research effort to combine these two modalities. A major engineering hurdle is that photomultiplier tubes (PMT), used in conventional PET detectors, are sensitive to magnetic field. This thesis explores the design considerations of different ways of combining small animal PMT-based PET systems with MRI through experimentation, modelling and Monte Carlo simulation. A proof-of-principle hybrid PET and field-cycled MRI system was built and the first multimodality images are shown. A Siemens Inveon PET was exposed to magnetic fields of different strengths and the performance is characterized as a function of field magnitude. The results of this experiment established external magnetic field limits and design studies are shown for wide range of approaches to combining the PET system with various configurations of field-cycled MRI and superconducting MRI systems. A sophisticated Monte Carlo PET simulation workflow based on the GATE toolkit was developed to model the Siemens Inveon PET. Simulated PET data were converted to the raw Siemens list-mode format and were processed and reconstructed using the same processing chain as the data measured on the actual scanner. A general GATE add-on was developed to rapidly generate attenuation correction sinograms using the precise detector geometry and attenuation coefficients built into the emission simulation. Emission simulations and the attenuation correction add-on were validated against measured data. Simulations were performed to study the impact of radiofrequency coil components on PET image quality and to test the suitability of various MR-compatible materials for a dual-modality animal bed

    Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using beta-gamma coincidences

    Full text link
    We present a nuclear medical imaging technique, employing triple-gamma trajectory intersections from beta^+ - gamma coincidences, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of reconstructed intersections per voxel compared to a conventional PET reconstruction analysis. This 'Îł\gamma-PET' technique draws on specific beta^+ - decaying isotopes, simultaneously emitting an additional photon. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize this technique, Monte-Carlo simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Only 40 intersections are sufficient for a reliable sub-millimeter image reconstruction of a point source embedded in a scattering volume of water inside a voxel volume of about 1 mm^3 ('high-resolution mode'). Moreover, starting with an injected activity of 400 MBq for ^76Br, the same number of only about 40 reconstructed intersections are needed in case of a larger voxel volume of 2 x 2 x 3~mm^3 ('high-sensitivity mode'). Requiring such a low number of reconstructed events significantly reduces the required acquisition time for image reconstruction (in the above case to about 140 s) and thus may open up the perspective for a quasi real-time imaging.Comment: 17 pages, 5 figutes, 3 table

    Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    Get PDF
    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positronemitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.This work was supported in part by National Institutes of Health grants R01-CA042593, U01-CA148131, R01CA160253, R01CA169072, and R01CA164371; by Human Frontier Science Program grant RGP0004/2013; and by the Innovative Medicines Initiative under grant agreement 115337, which comprises financial contributions from the European Union’s Seventh Framework Program (FP7/2007–2013

    Quantitative, Simultaneous PET/MRI for Intratumoral Imaging with an MRI-Compatible PET Scanner

    Get PDF
    Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. Methods: Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following ^(64)Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. Results: The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both ^(18)F-FDG and a ^(64)Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing diffusion MRI and radiolabeled antibody uptake patterns over time and visualized movement of antibodies from the vascular space into the tumor mass. Conclusion: The MRI-compatible PET scanner provided tumor images that were quantitatively accurate and spatially concordant with autoradiography and the small-animal PET examination. Cooccurrence matrix approaches enabled effective analysis of multimodal image sets. These observations confirm the ability of the current simultaneous PET/MRI system to provide accurate observations of intratumoral function and serve as a benchmark for future evaluations of hybrid instrumentation

    The clinical application of PET/CT: a contemporary review

    Get PDF
    The combination of positron emission tomography (PET) scanners and x-ray computed tomography (CT) scanners into a single PET/CT scanner has resulted in vast improvements in the diagnosis of disease, particularly in the field of oncology. A decade on from the publication of the details of the first PET/CT scanner, we review the technology and applications of the modality. We examine the design aspects of combining two different imaging types into a single scanner, and the artefacts produced such as attenuation correction, motion and CT truncation artefacts. The article also provides a discussion and literature review of the applications of PET/CT to date, covering detection of tumours, radiotherapy treatment planning, patient management, and applications external to the field of oncology

    Multi-Isotope Multi-Pinhole SPECT Bildgebung in kleinen Labortieren: Experimentelle Messungen und Monte Carlo Simulationen

    Get PDF
    Single photon emission computed tomography (SPECT) in small laboratory animals has become an integral part of translational medicine. It enables non-invasive validation of drug targeting, safety and efficacy in living organisms, which is progressively gaining importance in pharmaceutical industry. The increasing demand for efficiency in pharmaceutical research could be addressed by novel multitracer study designs. Multi-isotope multi-pinhole sampling allows validation of multiple tracers in a single experiment and consolidation of consecutive research trials. Due to physical and technical limitations, however, image quality and quantification can be substantially reduced. Advanced corrective procedures are required to establish multi-isotope multi-pinhole SPECT as a reliable and quantitative imaging technique for widespread use. For this purpose, the present work aimed to investigate the technical capabilities and physical limitations of multi-isotope multi-pinhole SPECT imaging in small laboratory animals. Based on experimental measurements and Monte Carlo simulations, specific error sources have been identified and procedures for quantitative image correction have been developed. A Monte Carlo simulation model of a state-of-the art SPECT/CT system has been established to provide a generalized framework for in-silico optimization of imaging hardware, acquisition protocols and reconstruction algorithms. The findings of this work can be used to improve image quality and quantification of SPECT in-vivo data for multi-isotope applications. They guide through the laborious process of multi-isotope protocol optimization and support the 3R welfare initiative that aims to replace, reduce and refine animal experimentation.Die Einzelphotonen-Emissionscomputertomographie (SPECT) in kleinen Labortieren hat sich als wichtiger Bestandteil der translationalen Medizin etabliert. Sie ermöglicht die nicht-invasive Validierung der Zielgenauigkeit, Wirksamkeit und Sicherheit von Wirkstoffen in lebenden Organismen und gewinnt zunehmend an Bedeutung in der pharmazeutischen Industrie. Die Forderung nach mehr Effizienz in der pharmazeutischen Forschung könnte durch neuartige Multitracer-Studien adressiert werden. Die Multi-Isotopen Akquisition mit Multi-Pinhole Kollimatoren ermöglicht die Validierung mehrerer Tracer in einem einzelnen Experiment und die Konsolidierung konsekutiver Bildgebungsstudien. Aufgrund physikalischer und technischer Limitationen ist die Bildqualität und Quantifizierbarkeit bei diesem Verfahren jedoch häufig reduziert. Um die Multi-Isotopen SPECT als zuverlässige und quantitative Bildgebungsmethode für den breiten Einsatz zu etablieren sind komplexe Korrekturverfahren erforderlich. Ziel der vorliegenden Arbeit war daher, die technischen Möglichkeiten und physikalischen Limitationen der Multi-Isotopen SPECT-Bildgebung in kleinen Labortieren systematisch zu untersuchen. Mithilfe von experimentellen Messungen und Monte Carlo Simulationen wurden spezifische Fehlerquellen identifiziert und Verfahren zur quantitativen Bildkorrektur entwickelt. Zudem wurde das Monte-Carlo Modell eines neuartigen SPECT/CT-Systems etabliert, um eine Plattform für die in-silico Optimierung von Bildgebungshardware, Aufnahmeprotokollen und Rekonstruktionsalgorithmen zu schaffen. Die Ergebnisse dieser Arbeit können die Bildqualität und Quantifizierbarkeit von SPECT in-vivo Daten für Multi-Isotopen Anwendungen verbessern. Sie führen beispielhaft durch den Prozess der Multi-Isotopen Protokolloptimierung und unterstützen die 3R-Initiative mit dem Ziel, experimentelle Tierversuche zu vermeiden (Replace), zu vermindern (Reduce) und zu verbessern (Refine)

    MR-based attenuation correction and scatter correction in neurological PET/MR imaging with 18F-FDG

    Get PDF
    The aim was to investigate the effects of MR-based attenuation correction (MRAC) and scatter correction to positron emission tomography (PET) image quantification in neurological PET/MR with 18F-FDG. A multi-center phantom study was conducted to investigate the effect of MRAC between PET/MR and PET/CT systems (I). An MRAC method to derive bone from T1-weighted MR images was developed (II, III). Finally, scatter correction accuracy with MRAC was investigated (IV). The results show that the quantitative accuracy in PET is well-comparable be-tween PET/MR and PET/CT systems when an attenuation correction method resembling CT-based attenuation correction (CTAC) is implemented. This al-lows achieving of a PET bias within standard uptake value (SUV) quantification repeatability (< 10 % error) and is within the repeatability of PET in most sys-tems and brain regions (< 5 % error). In addition, MRAC considering soft tissue, air and bone can be derived using T1-weighted images alone. The improved version of the MRAC method allows achieving a quantitative accuracy feasible for advanced applications (< 5 % error). MRAC has a minor effect on the scatter correction accuracy (< 3 % error), even when using MRAC without bone. In conclusion, MRAC can be considered the largest contributing factor to PET quantification bias in 18F-FDG neurological PET/MR. This finding is not explicitly limited only to 18F-FDG imaging. Once an MRAC method that performs close to CTAC is implemented, there is no reason why a PET/MR system would perform differently from a PET/CT system. Such an MRAC method has been developed and is freely available (http://bit.ly/2fx6Jjz). Scatter correction can be considered a non-issue in neurological PET/MR imaging when using 18F-FD

    Recent developments in time-of-flight PET

    Get PDF
    While the first time-of-flight (TOF)-positron emission tomography (PET) systems were already built in the early 1980s, limited clinical studies were acquired on these scanners. PET was still a research tool, and the available TOF-PET systems were experimental. Due to a combination of low stopping power and limited spatial resolution (caused by limited light output of the scintillators), these systems could not compete with bismuth germanate (BGO)-based PET scanners. Developments on TOF system were limited for about a decade but started again around 2000. The combination of fast photomultipliers, scintillators with high density, modern electronics, and faster computing power for image reconstruction have made it possible to introduce this principle in clinical TOF-PET systems. This paper reviews recent developments in system design, image reconstruction, corrections, and the potential in new applications for TOF-PET. After explaining the basic principles of time-of-flight, the difficulties in detector technology and electronics to obtain a good and stable timing resolution are shortly explained. The available clinical systems and prototypes under development are described in detail. The development of this type of PET scanner also requires modified image reconstruction with accurate modeling and correction methods. The additional dimension introduced by the time difference motivates a shift from sinogram- to listmode-based reconstruction. This reconstruction is however rather slow and therefore rebinning techniques specific for TOF data have been proposed. The main motivation for TOF-PET remains the large potential for image quality improvement and more accurate quantification for a given number of counts. The gain is related to the ratio of object size and spatial extent of the TOF kernel and is therefore particularly relevant for heavy patients, where image quality degrades significantly due to increased attenuation (low counts) and high scatter fractions. The original calculations for the gain were based on analytical methods. Recent publications for iterative reconstruction have shown that it is difficult to quantify TOF gain into one factor. The gain depends on the measured distribution, the location within the object, and the count rate. In a clinical situation, the gain can be used to either increase the standardized uptake value (SUV) or reduce the image acquisition time or administered dose. The localized nature of the TOF kernel makes it possible to utilize local tomography reconstruction or to separate emission from transmission data. The introduction of TOF also improves the joint estimation of transmission and emission images from emission data only. TOF is also interesting for new applications of PET-like isotopes with low branching ratio for positron fraction. The local nature also reduces the need for fine angular sampling, which makes TOF interesting for limited angle situations like breast PET and online dose imaging in proton or hadron therapy. The aim of this review is to introduce the reader in an educational way into the topic of TOF-PET and to give an overview of the benefits and new opportunities in using this additional information

    The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    Get PDF
    Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advan- tages and disadvantages of the different approaches are de- scribed. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combina- tions of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceu- ticals in clinical practice may be accelerated
    • …
    corecore