3,182 research outputs found

    Bioinformatics

    Get PDF
    Motivation: Current methods that annotate conserved transcription factor binding sites in an alignment of two regulatory regions perform the alignment and annotation step separately and combine the results in the end. If the site descriptions are weak or the sequence similarity is low, the local gap structure of the alignment poses a problem in detecting the conserved sites. It is therefore desirable to have an approach that is able to simultaneously consider the alignment as well as possibly matching site locations. Results: With SimAnn we have developed a tool that serves exactly this purpose. By combining the annotation step and the alignment of the two sequences into one algorithm, it detects conserved sites more clearly. It has the additional advantage that all parameters are calculated based on statistical considerations. This allows for its successful application with any binding site model of interest. We present the algorithm and the approach for parameter selection and compare its performance with that of other, non-simultaneous methods on both simulated and real data. Availability: A command-line based C++ implementation of SimAnn is available from the authors upon request. In addition, we provide Perl scripts for calculating the input parameters based on statistical considerations

    Genome Biol.

    No full text
    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome

    Large-Scale Discovery of Promoter Motifs in Drosophila melanogaster

    Get PDF
    A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs) that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes

    Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs

    Get PDF
    Gene expression is regulated at each step from chromatin remodeling through translation and degradation. Several known RNA-binding regulatory proteins interact with specific RNA secondary structures in addition to specific nucleotides. To provide a more comprehensive understanding of the regulation of gene expression, we developed an integrative computational approach that leverages functional genomics data and nucleotide sequences to discover RNA secondary structure-defined cis-regulatory elements (SCREs). We applied our structural cis-regulatory element detector (StructRED) to microarray and mRNA sequence data from Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We recovered the known specificities of Vts1p in yeast and Smaug in flies. In addition, we discovered six putative SCREs in flies and three in humans. We characterized the SCREs based on their condition-specific regulatory influences, the annotation of the transcripts that contain them, and their locations within transcripts. Overall, we show that modeling functional genomics data in terms of combined RNA structure and sequence motifs is an effective method for discovering the specificities and regulatory roles of RNA-binding proteins
    • ā€¦
    corecore