24,100 research outputs found

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Mirror Adaptation in Sensory-Motor Simultaneity

    Get PDF
    Background: When one watches a sports game, one may feel her/his own muscles moving in synchrony with the player's. Such parallels between observed actions of others and one's own has been well supported in the latest progress in neuroscience, and coined “mirror system.” It is likely that due to such phenomena, we are able to learn motor skills just by observing an expert's performance. Yet it is unknown whether such indirect learning occurs only at higher cognitive levels, or also at basic sensorimotor levels where sensorimotor delay is compensated and the timing of sensory feedback is constantly calibrated. Methodology/Principal Findings: Here, we show that the subject's passive observation of an actor manipulating a computer mouse with delayed auditory feedback led to shifts in subjective simultaneity of self mouse manipulation and auditory stimulus in the observing subjects. Likewise, self adaptation to the delayed feedback modulated the simultaneity judgment of the other subjects manipulating a mouse and an auditory stimulus. Meanwhile, subjective simultaneity of a simple visual disc and the auditory stimulus (flash test) was not affected by observation of an actor nor self-adaptation. Conclusions/Significance: The lack of shift in the flash test for both conditions indicates that the recalibration transfer is specific to the action domain, and is not due to a general sensory adaptation. This points to the involvement of a system for the temporal monitoring of actions, one that processes both one's own actions and those of others
    corecore