267 research outputs found

    Low-power spatial computing using dynamic threshold devices

    Get PDF
    Asynchronous spatial computing systems exhibit only localized communication, their overall data-flow being controlled by handshaking. It is therefore straightforward to determine when a particular part of such a system is active. We show that using thin-body double-gate fully depleted SOI transistors, the shift in threshold voltage that can be produced by modulating the back-gate bias is sufficient to reduce subthreshold leakage power by a factor of more than 104 in typical circuits. Using TBFDSOI devices in spatial computing architectures will allow overall power to be greatly reduced while maintaining high performance

    Reducing the Sub-threshold and Gate-tunneling Leakage of SRAM Cells using Dual-Vt and Dual-Tox Assignment

    Full text link

    Design and analysis of two low power sram cell structures

    Get PDF
    In this paper, two static random access memory (SRAM) cells that reduce the static power dissipation due to gate and subthreshold leakage currents are presented. The first cell structure results in reduced gate voltages for the NMOS pass transistors, and thus lowers the gate leakage current. It reduces the subthreshold leakage current by increasing the ground level during the idle (inactive) mode. The second cell structure makes use of PMOS pass transistors to lower the gate leakage current. In addition, dual threshold voltage technology with forward body biasing is utilized with this structure to reduce the subthreshold leakage while maintaining performance. Compared to a conventional SRAM cell, the first cell structure decreases the total gate leakage current by 66% and the idle power by 58% while the second cell structure reduces the total gate leakage current by 27% and the idle power by 37% with no access time degradation

    Optimization and Characterization of CMOS for Ultra Low Power Applications

    Get PDF
    Aggressive voltage scaling into the subthreshold operating region holds great promise for applications with strict energy budget. However, it has been established that higher speed superthreshold device is not suitable for moderate performance subthreshold circuits. The design constraint for selecting Vth and TOX is much more flexible for subthreshold circuits at low voltage level than superthreshold circuits. In order to obtain better performance from a device under subthreshold conditions, it is necessary to investigate and optimize the process and geometry parameters of a Si MOSFET at nanometer technology node. This paper calibrates the fabrication process parameters and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length. Thereafter, the calibrated device for superthreshold application is optimized for better performance under subthreshold conditions using TCAD simulation. The device simulated in this work shows 9.89% improvement in subthreshold slope and 34% advantage in ION/IOFF ratio for the same drive current

    Subthreshold and gate leakage current analysis and reduction in VLSI circuits

    Get PDF
    CMOS technology has scaled aggressively over the past few decades in an effort to enhance functionality, speed and packing density per chip. As the feature sizes are scaling down to sub-100nm regime, leakage power is increasing significantly and is becoming the dominant component of the total power dissipation. Major contributors to the total leakage current in deep submicron regime are subthreshold and gate tunneling leakage currents. The leakage reduction techniques developed so far were mostly devoted to reducing subthreshold leakage. However, at sub-65nm feature sizes, gate leakage current grows faster and is expected to surpass subthreshold leakage current. In this work, an extensive analysis of the circuit level characteristics of subthreshold and gate leakage currents is performed at 45nm and 32nm feature sizes. The analysis provides several key observations on the interdependency of gate and subthreshold leakage currents. Based on these observations, a new leakage reduction technique is proposed that optimizes both the leakage currents. This technique identifies minimum leakage vectors for a given circuit based on the number of transistors in OFF state and their position in the stack. The effectiveness of the proposed technique is compared to most of the mainstream leakage reduction techniques by implementing them on ISCAS89 benchmark circuits. The proposed leakage reduction technique proved to be more effective in reducing gate leakage current than subthreshold leakage current. However, when combined with dual-threshold and variable-threshold CMOS techniques, substantial subthreshold leakage current reduction was also achieved. A total savings of 53% for subthreshold leakage current and 26% for gate leakage current are reported

    Vertical III-V Nanowire Transistors for Low-Power Electronics

    Get PDF
    Power dissipation has been the major challenge in the downscaling of transistor technology. Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) have struggled to keep a low power consumption while still maintaining a high performance due to the low carrier mobilities of Si but also due to their inherent minimum inverse subthreshold slope (S ≥ 60 mV/dec) which is limited by thermionic emission. This thesis work studied the capabilities and limitations of III-V based vertical nanowire n-type Tunneling Field-Effect Transistor (TFET) and p-type MOSFET (PMOS). InAs/InGaAsSb/GaSb heterojunction was employed in the whole study. The main focus was to understand the influence of the device fabrication processes and the structural factors of the nanowires such as band alignment, composition and doping on the electrical performance of the TFET. Optimizations of the device processes including spacer technology improvement, Equivalent Oxide Thickness (EOT) downscaling, and gate underlap/overlap were explored utilizing structural characterizations. Systematic fine tuning of the band alignment of the tunnel junction resultedin achieving the best performing sub-40 mV/dec TFETs with S = 32 mV/decand ION = 4μA/μm for IOFF = 1 nA/μm at VDS = 0.3 V. The suitability of employing TFET for electronic applications at cryogenic temperatures has been explored utilizing experimental device data. The impact of the choice of heterostructure and dopant incorporation were investigated to identify the optimum operating temperature and voltage in different temperature regimes. A novel gate last process self-aligning the gate and drain contacts to the intrinsic and doped segments, respectively was developed for vertical InGaAsSb-GaAsSb core-shell nanowire transistors leading to the first sub-100 mV/dec PMOS with S = 75 mV/dec, significant ION/ IOFF = 104 and IMIN < 1 nA/μm at VDS = -0.5 V
    corecore