83,158 research outputs found

    Simultaneous State and Parameter Estimation of Distributed-Parameter Physical Systems based on Sliced Gaussian Mixture Filter

    Get PDF
    This paper presents a method for the simultaneous state and parameter estimation of finite-dimensional models of distributed systems monitored by a sensor network. In the first step, the distributed system is spatially and temporally decomposed leading to a linear finite-dimensional model in state space form. The main challenge is that the simultaneous state and parameter estimation of such systems leads to a high-dimensional nonlinear problem. Thanks to the linear substructure contained in the resulting finite-dimensional model, the development of an overall more efficient estimation process is possible. Therefore, in the second step, we propose the application of a novel density representation - sliced Gaussian mixture density - in order to decompose the estimation problem into a (conditionally) linear and a nonlinear problem. The systematic approximation procedure minimizing a certain distance measure allows the derivation of (close to) optimal and deterministic results. The proposed estimation process provides novel prospects in sensor network applications. The performance is demonstrated by means of simulation results

    On-line state and parameter estimation in nonlinear systems

    Get PDF
    On-line, simultaneous state and parameters estimation in deterministic, nonlinear dynamic systems of known structure is the problem considered. Available methods are few and fall short of user needs in that they are difficult to apply, their applicability is restricted to limited classes of systems, and for some, conditions guaranteeing their convergence don\u27t exist. The new methods developed herein are placed into two categories: those that involve the use of Riccati equations, and those that do not. Two of the new methods do not use Riccati equations, and each is considered to be a different extension of Friedland\u27 s parameter observer for nonlinear systems with full state availability to the case of partial state availability. One is essentially a reduced-order variant of a state and parameter estimator developed by Raghavan. The other is developed by the direct extension of Friedland\u27 s parameter observer to the case of partial state availability. Both are shown to be globally asymptotically stable for nonlinear systems affine in the unknown parameters and involving nonlinearities that depend on known quantities, a class restriction also true of existing state and parameter estimation methods. The two new methods offer, however, the advantages of improved computational efficiency and the potential for superior transient performance, which is demonstrated in a simulation example. Of the new methods that do involve a Riccati equation, there are three. The first is the separate-bias form of the reduced-order Kalman filter. The scope of this filter is somewhat broader than the others developed herein in that it is an optimal filter for linear, stochastic systems involving noise-free observations. To apply this filter to the joint state and parameter estimation problem, one interprets the unknown parameters as constant biases. For the system class defined above, the method is globally asymptotically stable. The second Riccati equation based method is derived by the application of an existing method, the State Dependent Algebraic Riccati Equation (SDARE) filtering method, to the problem of state and parameter estimation. It is shown to work well in several nonlinear examples involving a few unknown parameters; however, as the number of parameters increases, the method\u27s applicability is diminished due to an apparent loss of observability within the filter which hinders the generation of filter gains. The third is a new filtering method which uses a State Dependent Differential Riccati Equation (SDDRE) for the generation of filter gains, and through its use, avoids the “observability” shortcomings of the SDARE method. This filter is similar to the Extended Kalman Filter (EKF), and is compared to the EKF with regard to stability through a Lyapunov analysis, and with regard to performance in a 4th order stepper motor simulation involving 5 unknown parameters. For the very broad class of systems that are bilinear in the state and unknown parameters, and potentially involving products of unmeasured states and unknown parameters, the EKF is shown to possess a semi-global region of asymptotic stability, given the assumption of observability and controllability along estimated trajectories. The stability of the new SDDRE filter is discussed

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    Location of leaks in pipelines using parameter identification tools

    Full text link
    This work proposes an approach to locate leaks by identifying the parameters of finite models associated with these fault events. The identification problem is attacked by using well-known identification methods such as the Prediction Error Method and extended Kalman filters. In addition, a frequency evaluation is realized to check the conditions for implementing any method which require an excitation condition.Comment: This paper has some error
    corecore