2,825 research outputs found

    Simultaneous emission and attenuation reconstruction in time-of-flight PET using a reference object

    Get PDF
    BACKGROUND: Simultaneous reconstruction of emission and attenuation images in time-of-flight (TOF) positron emission tomography (PET) does not provide a unique solution. In this study, we propose to solve this limitation by including additional information given by a reference object with known attenuation placed outside the patient. Different configurations of the reference object were studied including geometry, material composition, and activity, and an optimal configuration was defined. In addition, this configuration was tested for different timing resolutions and noise levels. RESULTS: The proposed strategy was tested in 2D simulations obtained by forward projection of available PET/CT data and noise was included using Monte Carlo techniques. Obtained results suggest that the optimal configuration corresponds to a water cylinder inserted in the patient table and filled with activity. In that case, mean differences between reconstructed and true images were below 10%. However, better results can be obtained by increasing the activity of the reference object. CONCLUSION: This study shows promising results that might allow to obtain an accurate attenuation map from pure TOF-PET data without prior knowledge obtained from CT, MRI, or transmission scans.This work was supported by a grant from the Comunidad de Madrid (2016-T1/TIC-1099). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII); the Ministerio de Ciencia, Innovación y Universidades (MCNU); and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Design of a realistic PET-CT-MRI phantom

    Get PDF
    The validation of the PET image quality of new PET-MRI systems should be done against the image quality of currently available PET-CT systems. This includes the validation of new attenuation correction methods. Such validation studies should preferentially be done using a phantom. There are currently no phantoms that have a realistic appearance on PET, CT and MRI. In this work we present the design and evaluation of such a phantom. The four most important tissue types for attenuation correction are air, lung, soft tissue and bone. An attenuation correction phantom should therefore contain these four tissue types. As it is difficult to mimic bone and lung on all three modalities using a synthetic material, we propose the use of biological material obtained from cadavers. For the lung section a lobe of a pig lung was used. It was excised and inflated using a ventilator. For the bone section the middle section of a bovine femur was used. Both parts were fixed inside a PMMA cylinder with radius 10 cm. The phantom was filled with 18F-FDG and two hot spheres and one cold sphere were added. First a PET scan was acquired on a PET-CT system. Subsequently, a transmission measurement and a CT acquisition were done on the same system. Afterwards, the phantom was moved to the MRI facility and a UTE-MRI was acquired. Average CT values and MRI R 2 values in bone and lung were calculated to evaluate the realistic appearance of the phantom on both modalities. The PET data was reconstructed with CT-based, transmission-based and MRI-based attenuation correction. The activity in the hot and cold spheres in the images reconstructed using transmission-based and MRI-based attenuation correction was compared to the reconstructed activity using CT-based attenuation correction. The average CT values in lung and bone were -630 HU and 1300 HU respectively. The average R 2 values were 0.7 ms -1 and 1.05 ms -1 respectively. These values are comparable to the values observed in clinical data sets. Transmission-based and MRI-based attenuation correction yielded an average difference with CT- based attenuation correction in the hot spots of -22 % and -8 %. In the cold spot the average differences were +3 % and -8 %. The construction of a PET-CT-MRI phantom was described. The phantom has a realistic appearance on all three modalities. It was used to evaluate two attenuation correction methods for PET-MRI scanners

    NEMA NU 2-2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes

    Get PDF
    BackgroundFully integrated PET/MR systems are being used frequently in clinical research and routine. National Electrical Manufacturers Association (NEMA) characterization of these systems is generally done with F-18 which is clinically the most relevant PET isotope. However, other PET isotopes, such as Ga-68 and Y-90, are gaining clinical importance as they are of specific interest for oncological applications and for follow-up of Y-90-based radionuclide therapy. These isotopes have a complex decay scheme with a variety of prompt gammas in coincidence. Ga-68 and Y-90 have higher positron energy and, because of the larger positron range, there may be interference with the magnetic field of the MR compared to F-18. Therefore, it is relevant to determine the performance of PET/MR for these clinically relevant and commercially available isotopes.MethodsNEMA NU 2-2007 performance measurements were performed for characterizing the spatial resolution, sensitivity, image quality, and the accuracy of attenuation and scatter corrections for F-18, Ga-68, and Y-90. Scatter fraction and noise equivalent count rate (NECR) tests were performed using F-18 and Ga-68. All phantom data were acquired on the GE Signa integrated PET/MR system, installed in UZ Leuven, Belgium.Results(18)F, Ga-68, and Y-90 NEMA performance tests resulted in substantially different system characteristics. In comparison with F-18, the spatial resolution is about 1mm larger in the axial direction for Ga-68 and no significative effect was found for Y-90. The impact of this lower resolution is also visible in the recovery coefficients of the smallest spheres of Ga-68 in image quality measurements, where clearly lower values are obtained. For Y-90, the low number of counts leads to a large variability in the image quality measurements. The primary factor for the sensitivity change is the scale factor related to the positron emission fraction. There is also an impact on the peak NECR, which is lower for Ga-68 than for F-18 and appears at higher activities.ConclusionsThe system performance of GE Signa integrated PET/MR was substantially different, in terms of NEMA spatial resolution, image quality, and NECR for Ga-68 and Y-90 compared to F-18. But these differences are compensated by the PET/MR scanner technologies and reconstructions methods

    Attenuation correction for brain PET imaging using deep neural network based on dixon and ZTE MR images

    Full text link
    Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure.Comment: 15 pages, 12 figure

    Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using beta-gamma coincidences

    Full text link
    We present a nuclear medical imaging technique, employing triple-gamma trajectory intersections from beta^+ - gamma coincidences, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of reconstructed intersections per voxel compared to a conventional PET reconstruction analysis. This 'γ\gamma-PET' technique draws on specific beta^+ - decaying isotopes, simultaneously emitting an additional photon. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize this technique, Monte-Carlo simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Only 40 intersections are sufficient for a reliable sub-millimeter image reconstruction of a point source embedded in a scattering volume of water inside a voxel volume of about 1 mm^3 ('high-resolution mode'). Moreover, starting with an injected activity of 400 MBq for ^76Br, the same number of only about 40 reconstructed intersections are needed in case of a larger voxel volume of 2 x 2 x 3~mm^3 ('high-sensitivity mode'). Requiring such a low number of reconstructed events significantly reduces the required acquisition time for image reconstruction (in the above case to about 140 s) and thus may open up the perspective for a quasi real-time imaging.Comment: 17 pages, 5 figutes, 3 table

    Multiresolution spatiotemporal mechanical model of the heart as a prior to constrain the solution for 4D models of the heart.

    Get PDF
    In several nuclear cardiac imaging applications (SPECT and PET), images are formed by reconstructing tomographic data using an iterative reconstruction algorithm with corrections for physical factors involved in the imaging detection process and with corrections for cardiac and respiratory motion. The physical factors are modeled as coefficients in the matrix of a system of linear equations and include attenuation, scatter, and spatially varying geometric response. The solution to the tomographic problem involves solving the inverse of this system matrix. This requires the design of an iterative reconstruction algorithm with a statistical model that best fits the data acquisition. The most appropriate model is based on a Poisson distribution. Using Bayes Theorem, an iterative reconstruction algorithm is designed to determine the maximum a posteriori estimate of the reconstructed image with constraints that maximizes the Bayesian likelihood function for the Poisson statistical model. The a priori distribution is formulated as the joint entropy (JE) to measure the similarity between the gated cardiac PET image and the cardiac MRI cine image modeled as a FE mechanical model. The developed algorithm shows the potential of using a FE mechanical model of the heart derived from a cardiac MRI cine scan to constrain solutions of gated cardiac PET images

    Recent developments in time-of-flight PET

    Get PDF
    While the first time-of-flight (TOF)-positron emission tomography (PET) systems were already built in the early 1980s, limited clinical studies were acquired on these scanners. PET was still a research tool, and the available TOF-PET systems were experimental. Due to a combination of low stopping power and limited spatial resolution (caused by limited light output of the scintillators), these systems could not compete with bismuth germanate (BGO)-based PET scanners. Developments on TOF system were limited for about a decade but started again around 2000. The combination of fast photomultipliers, scintillators with high density, modern electronics, and faster computing power for image reconstruction have made it possible to introduce this principle in clinical TOF-PET systems. This paper reviews recent developments in system design, image reconstruction, corrections, and the potential in new applications for TOF-PET. After explaining the basic principles of time-of-flight, the difficulties in detector technology and electronics to obtain a good and stable timing resolution are shortly explained. The available clinical systems and prototypes under development are described in detail. The development of this type of PET scanner also requires modified image reconstruction with accurate modeling and correction methods. The additional dimension introduced by the time difference motivates a shift from sinogram- to listmode-based reconstruction. This reconstruction is however rather slow and therefore rebinning techniques specific for TOF data have been proposed. The main motivation for TOF-PET remains the large potential for image quality improvement and more accurate quantification for a given number of counts. The gain is related to the ratio of object size and spatial extent of the TOF kernel and is therefore particularly relevant for heavy patients, where image quality degrades significantly due to increased attenuation (low counts) and high scatter fractions. The original calculations for the gain were based on analytical methods. Recent publications for iterative reconstruction have shown that it is difficult to quantify TOF gain into one factor. The gain depends on the measured distribution, the location within the object, and the count rate. In a clinical situation, the gain can be used to either increase the standardized uptake value (SUV) or reduce the image acquisition time or administered dose. The localized nature of the TOF kernel makes it possible to utilize local tomography reconstruction or to separate emission from transmission data. The introduction of TOF also improves the joint estimation of transmission and emission images from emission data only. TOF is also interesting for new applications of PET-like isotopes with low branching ratio for positron fraction. The local nature also reduces the need for fine angular sampling, which makes TOF interesting for limited angle situations like breast PET and online dose imaging in proton or hadron therapy. The aim of this review is to introduce the reader in an educational way into the topic of TOF-PET and to give an overview of the benefits and new opportunities in using this additional information
    corecore