406 research outputs found

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    Sparse feature learning for image analysis in segmentation, classification, and disease diagnosis.

    Get PDF
    The success of machine learning algorithms generally depends on intermediate data representation, called features that disentangle the hidden factors of variation in data. Moreover, machine learning models are required to be generalized, in order to reduce the specificity or bias toward the training dataset. Unsupervised feature learning is useful in taking advantage of large amount of unlabeled data, which is available to capture these variations. However, learned features are required to capture variational patterns in data space. In this dissertation, unsupervised feature learning with sparsity is investigated for sparse and local feature extraction with application to lung segmentation, interpretable deep models, and Alzheimer\u27s disease classification. Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder are used as architectures or models for unsupervised feature learning. They are investigated along with nonnegativity, sparsity and part-based representation constraints for generalized and transferable feature extraction

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images

    Get PDF
    Numerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing proble

    Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT)

    Full text link
    [EN] Model-based computed tomography (CT) image reconstruction is dominated by iterative algorithms. Although long reconstruction times remain as a barrier in practical applications, techniques to speed up its convergence are object of investigation, obtaining impressive results. In this thesis, a direct algorithm is proposed for model-based image reconstruction. The model-based approximation relies on the construction of a model matrix that poses a linear system which solution is the reconstructed image. The proposed algorithm consists in the QR decomposition of this matrix and the resolution of the system by a backward substitution process. The cost of this image reconstruction technique is a matrix vector multiplication and a backward substitution process, since the model construction and the QR decomposition are performed only once, because of each image reconstruction corresponds to the resolution of the same CT system for a different right hand side. Several problems regarding the implementation of this algorithm arise, such as the exact calculation of a volume intersection, definition of fill-in reduction strategies optimized for CT model matrices, or CT symmetry exploit to reduce the size of the system. These problems have been detailed and solutions to overcome them have been proposed, and as a result, a proof of concept implementation has been obtained. Reconstructed images have been analyzed and compared against the filtered backprojection (FBP) and maximum likelihood expectation maximization (MLEM) reconstruction algorithms, and results show several benefits of the proposed algorithm. Although high resolutions could not have been achieved yet, obtained results also demonstrate the prospective of this algorithm, as great performance and scalability improvements would be achieved with the success in the development of better fill-in strategies or additional symmetries in CT geometry.[ES] En la reconstrucción de imagen de tomografía axial computerizada (TAC), en su modalidad model-based, prevalecen los algoritmos iterativos. Aunque los altos tiempos de reconstrucción aún son una barrera para aplicaciones prácticas, diferentes técnicas para la aceleración de su convergencia están siendo objeto de investigación, obteniendo resultados impresionantes. En esta tesis, se propone un algoritmo directo para la reconstrucción de imagen model-based. La aproximación model-based se basa en la construcción de una matriz modelo que plantea un sistema lineal cuya solución es la imagen reconstruida. El algoritmo propuesto consiste en la descomposición QR de esta matriz y la resolución del sistema por un proceso de sustitución regresiva. El coste de esta técnica de reconstrucción de imagen es un producto matriz vector y una sustitución regresiva, ya que la construcción del modelo y la descomposición QR se realizan una sola vez, debido a que cada reconstrucción de imagen supone la resolución del mismo sistema TAC para un término independiente diferente. Durante la implementación de este algoritmo aparecen varios problemas, tales como el cálculo exacto del volumen de intersección, la definición de estrategias de reducción del relleno optimizadas para matrices de modelo de TAC, o el aprovechamiento de simetrías del TAC que reduzcan el tama\~no del sistema. Estos problemas han sido detallados y se han propuesto soluciones para superarlos, y como resultado, se ha obtenido una implementación de prueba de concepto. Las imágenes reconstruidas han sido analizadas y comparadas frente a los algoritmos de reconstrucción filtered backprojection (FBP) y maximum likelihood expectation maximization (MLEM), y los resultados muestran varias ventajas del algoritmo propuesto. Aunque no se han podido obtener resoluciones altas aún, los resultados obtenidos también demuestran el futuro de este algoritmo, ya que se podrían obtener mejoras importantes en el rendimiento y la escalabilidad con el éxito en el desarrollo de mejores estrategias de reducción de relleno o simetrías en la geometría TAC.[CA] En la reconstrucció de imatge tomografia axial computerizada (TAC) en la seua modalitat model-based prevaleixen els algorismes iteratius. Tot i que els alts temps de reconstrucció encara són un obstacle per a aplicacions pràctiques, diferents tècniques per a l'acceleració de la seua convergència estàn siguent objecte de investigació, obtenint resultats impressionants. En aquesta tesi, es proposa un algorisme direct per a la recconstrucció de image model-based. L'aproximació model-based es basa en la construcció d'una matriu model que planteja un sistema lineal quina sol·lució es la imatge reconstruida. L'algorisme propost consisteix en la descomposició QR d'aquesta matriu i la resolució del sistema per un procés de substitució regresiva. El cost d'aquesta tècnica de reconstrucció de imatge es un producte matriu vector i una substitució regresiva, ja que la construcció del model i la descomposició QR es realitzen una sola vegada, degut a que cada reconstrucció de imatge suposa la resolució del mateix sistema TAC per a un tèrme independent diferent. Durant la implementació d'aquest algorisme sorgixen diferents problemes, tals com el càlcul exacte del volum de intersecció, la definició d'estratègies de reducció de farcit optimitzades per a matrius de model de TAC, o el aprofitament de simetries del TAC que redueixquen el tamany del sistema. Aquestos problemes han sigut detallats y s'han proposat solucions per a superar-los, i com a resultat, s'ha obtingut una implementació de prova de concepte. Les imatges reconstruides han sigut analitzades i comparades front als algorismes de reconstrucció filtered backprojection (FBP) i maximum likelihood expectation maximization (MLEM), i els resultats mostren varies ventajes del algorisme propost. Encara que no s'han pogut obtindre resolucions altes ara per ara, els resultats obtinguts també demostren el futur d'aquest algorisme, ja que es prodrien obtindre millores importants en el rendiment i la escalabilitat amb l'éxit en el desemvolupament de millors estratègies de reducció de farcit o simetries en la geometria TAC.Iborra Carreres, A. (2015). Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59421TESI

    Deep learning methods for solving linear inverse problems: Research directions and paradigms

    Get PDF
    The linear inverse problem is fundamental to the development of various scientific areas. Innumerable attempts have been carried out to solve different variants of the linear inverse problem in different applications. Nowadays, the rapid development of deep learning provides a fresh perspective for solving the linear inverse problem, which has various well-designed network architectures results in state-of-the-art performance in many applications. In this paper, we present a comprehensive survey of the recent progress in the development of deep learning for solving various linear inverse problems. We review how deep learning methods are used in solving different linear inverse problems, and explore the structured neural network architectures that incorporate knowledge used in traditional methods. Furthermore, we identify open challenges and potential future directions along this research line

    Source Separation in Chemical Analysis : Recent Achievements and Perspectives

    Get PDF
    International audienceSource separation is one of the most relevant estimation problems found in chemistry. Indeed, dealing with mixtures is paramount in different kinds of chemical analysis. For instance, there are some cases where the analyte is a chemical mixture of different components, e.g., in the analysis of rocks and heterogeneous materials through spectroscopy. Moreover, a mixing process can also take place even when the components are not chemically mixed. For instance, in ionic analysis of liquid samples, the ions are not chemically connected, but, due to the lack of selectivity of the chemical sensors, the acquired responses may be influenced by ions that are not the desired ones. Finally, there are some situations where the pure components cannot be isolated chemically since they appear only in the presence of other components. In this case, BSS may provide these components that cannot be retrieved otherwise. In this paper, our aim is to shed some light on the use of BSS in chemical analysis. In this context, we firstly provide a brief overview on source separation (Section II), with particular attention to the classes of linear and nonlinear mixing models (Sections III and IV, respectively). Then, (in Section V), we will give some conclusions and focus on challenging aspects that are found in chemical analysis. Although dealing with a relatively new field of applications, this article is not an exhaustive survey of source separation methods and algorithms, since there are solutions originated in closely related domains (e.g. remote sensing and hyperspectral imaging) that suit well several problems found in chemical analysis. Moreover, we do not discuss the supervised source separation methods, which are basically multivariate regression techniques, that one can find in chemometrics

    Optimization algorithms for inference and classification of genetic profiles from undersampled measurements

    Get PDF
    In this thesis, we tackle three different problems, all related to optimization techniques for inference and classification of genetic profiles. First, we extend the deterministic Non-negative Matrix Factorization (NMF) framework to the probabilistic case (PNMF). We apply the PNMF algorithm to cluster and classify DNA microarrays data. The proposed PNMF is shown to outperform the deterministic NMF and the sparse NMF algorithms in clustering stability and classification accuracy. Second, we propose SMURC: Small-sample MUltivariate Regression with Covariance estimation. Specifically, we consider a high dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. We show that, in this case, the maximum likelihood approach is senseless because the likelihood diverges. We propose a normalization of the likelihood function that guarantees convergence. Simulation results show that SMURC outperforms the regularized likelihood estimator with known covariance matrix and the state-of-the-art sparse Conditional Graphical Gaussian Model (sCGGM). In the third Chapter, we derive a new greedy algorithm that provides an exact sparse solution of the combinatorial l sub zero-optimization problem in an exponentially less computation time. Unlike other greedy approaches, which are only approximations of the exact sparse solution, the proposed greedy approach, called Kernel reconstruction, leads to the exact optimal solution

    Receptive fields optimization in deep learning for enhanced interpretability, diversity, and resource efficiency.

    Get PDF
    In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and the excessive number of weights are often deliberately built in into their design. This flexibility and performance usually come with high computational and memory demands both during training and inference. In addition, insight into the mappings DNN models perform and human ability to understand them still remain very limited. This dissertation addresses some of these limitations by balancing three conflicting objectives: computational/ memory demands, interpretability, and accuracy. This dissertation first introduces some unsupervised feature learning methods in a broader context of dictionary learning. It also sets the tone for deep autoencoder learning and constraints for data representations in light of removing some of the aforementioned bottlenecks such as the feature interpretability of deep learning models with nonnegativity constraints on receptive fields. In addition, the two main classes of solution to the drawbacks associated with overparameterization/ over-complete representation in deep learning models are also presented. Subsequently, two novel methods, one for each solution class, are presented to address the problems resulting from over-complete representation exhibited by most deep learning models. The first method is developed to achieve inference-cost-efficient models via elimination of redundant features with negligible deterioration of prediction accuracy. This is important especially for deploying deep learning models into resource-limited portable devices. The second method aims at diversifying the features of DNNs in the learning phase to improve their performance without undermining their size and capacity. Lastly, feature diversification is considered to stabilize adversarial learning and extensive experimental outcomes show that these methods have the potential of advancing the current state-of-the-art on different learning tasks and benchmark datasets
    corecore