206 research outputs found

    Temperature- and Phase-Independent Lateral Force Sensor based on a Core-Offset Multi-Mode Fiber Interferometer

    Get PDF
    A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators

    Sensores de fibra ótica para meios desafiantes

    Get PDF
    With the present work, the development of fiber optic sensor solutions for the application in challenging media was intended. New sensor structures based on the post-processing of optical fibers were addressed, taking into account their sensitivity to variations in the external environment. In a first stage, fiber Bragg gratings were embedded in lithium batteries, to monitor temperature in situ and operando. Due to the harsh chemical environment of the battery, fiber optic sensors revealed to be the most advantageous alternative, when comparing to the electronic sensors. Fiber sensors exhibited good sensitivities and fast responses, besides being less invasive, thus they did not compromise the battery response. Furthermore, they were chemically stable. Still in the framework of this theme, and with the objective of monitoring possible strain and pressure variations inside the batteries, new sensors based on in-line Fabry-Perot cavities have been proposed. These sensors were characterized in lateral load, strain, and temperature. In a later stage, the study focused on the development of configurations that allowed to obtain high-resolution and/or sensitivity sensors. One of such configurations was obtained by creating a hollow microsphere at the fiber tip. The sensor was used to detected concentration variations and refractive index of glycerin and water mixtures. The influence of the diaphragm size in the sensor response was also studied, as well as the temperature response. New sensors based on multimode interference have also been characterized, using a coreless silica fiber tip. First, the influence of different parameters, such as length and diameters were analyzed. The sensors were tested in different solutions of glucose and water. It was observed that the sensor diameter is a decisive factor in obtaining devices that are more sensitive to refractive index and, consequently, to concentration. The determination of the thermo-optic coefficient of water/ethanol mixtures was also addressed using a multimode fiber interferometer sensor. Finally, a multimode interferometer sensor was functionalized by depositing agarose throughout the structure, allowing to optimize the response of the sensors to the external environment.Com o presente trabalho pretendeu-se explorar soluções de sensores em fibra ótica para a aplicação em meios desafiantes. Novas estruturas sensoras baseadas em pós-processamento de fibra ótica foram abordadas, tendo em consideração a sua sensibilidade a variações do meio externo. Numa primeira etapa, foram embebidas redes de Bragg no interior de baterias de lítio, para monitorizar variações de temperatura in situ e operando. Devido ao complexo meio químico da bateria, os sensores em fibra ótica revelaram ser uma alternativa mais vantajosa em relação aos sensores elétricos, não só pela sensibilidade e rápida resposta, mas também pelo fato de não afetarem o desempenho da bateria. Além disso, os sensores usados revelaram ser pouco invasivos e quimicamente estáveis. Ainda no âmbito deste tema, e com o objetivo de monitorizar possíveis deformações e variações de pressão no interior da bateria de lítio, foram desenvolvidos novos sensores baseados em cavidades de Fabry-Perot do tipo in-line. Esses sensores foram caraterizados em pressão lateral, deformação e temperatura. Numa fase posterior, o estudo centrou-se no desenvolvimento de configurações que permitissem a obtenção de sensores com elevada resolução e/ou sensibilidade. Uma das configurações consistiu na formação de uma microesfera oca na ponta de uma fibra ótica. Esse sensor foi utilizado para detetar variações de concentração e índice de refração de misturas de glicerina e água. A influência do tamanho do diafragma na resposta do sensor também foi estudada, assim como a resposta em temperatura. Em seguida, desenvolveram-se novos sensores baseados em interferência multimodo, utilizando para tal uma ponta de fibra de sílica sem núcleo. Numa primeira abordagem analisou-se a influência de diferentes parâmetros, como o comprimento e o diâmetro dos sensores. Os sensores foram expostos a diferentes soluções de glucose e água. Verificou-se que o diâmetro do sensor é um fator decisivo para a obtenção de dispositivos mais sensíveis ao índice de refração e, consequentemente, à concentração. Foi também desenvolvido um sensor baseado em interferência multimodo que permitiu determinar o coeficiente termo-ótico de misturas de etanol e água. Por fim, procedeu-se à funcionalização de um sensor baseado em interferência multimodo através da deposição de agarose ao longo da estrutura, permitindo assim otimizar a sua resposta a variações do meio externo.Programa Doutoral em Engenharia Físic

    Hybrid fiber grating cavity for multi-parametric sensing.

    Get PDF
    We propose an all-fiber hybrid cavity involving two unbalanced uniform fiber Bragg gratings (FBGs) written at both sides of a tilted FBG (TFBG) to form an all-fiber interferometer. This configuration provides a wavelength gated reflection signal with interference fringes depending on the cavity features modulated by spectral dips associated to the wavelength dependent optical losses due to cladding mode coupling occurring along the TFBG. Such a robust structure preserves the advantages of uniform FBGs in terms of interrogation methods and allows the possibility of simultaneous physical and chemical sensing

    Intensity based interrogation of optical fibre sensors for industrial automation and intrusion detection systems

    Get PDF
    In this study, the use of optical fibre sensors for intrusion detection and industrial automation systems has been demonstrated, with a particular focus on low cost, intensity-based, interrogation techniques. The use of optical fibre sensors for intrusion detection systems to secure residential, commercial, and industrial premises against potential security breaches has been extensively reviewed in this thesis. Fibre Bragg grating (FBG) sensing is one form of optical fibre sensing that has been underutilised in applications such as in-ground, in-fence, and window and door monitoring, and addressing that opportunity has been a major goal of this thesis. Both security and industrial sensor systems must include some centralised intelligence (electronic controller) and ideally both automation and security sensor systems would be controlled and monitored by the same centralised system. Optical fibre sensor systems that could be used for either application have been designed, developed, and tested in this study, and optoelectronic interfaces for integrating these sensors with electronic controllers have been demonstrated. The versatility of FBG sensors means that they are also ideal for certain mainstream industrial applications. Two novel transducers have been developed in this work; a highly sensitive low pressure FBG diaphragm transducer and a FBG load cell transducer. Both have been designed to allow interrogation of the optical signal could occur within the housing of the individual sensors themselves. This is achieved in a simple and low cost manner that enables the output of the transducers to be easily connected to standard electronic controllers, such as programmable logic controllers. Furthermore, some of the nonlinear characteristics of FBG sensors have been explored with the aim of developing transducers that are inherently decoupled from strain and temperature interference. One of the major advantages of optical fibre sensors is their ability to be both time division and wavelength division multiplexed. The intensity-based interrogation techniques used here complement this attribute and are a major consideration when developing the transducers and optoelectronic circuits. A time division multiplexing technique, using transmit-reflect detection and incorporating a dual bus, has also been developed. This system architecture enables all the different optical fibre transducers on the network to have the same Bragg wavelength and hence the number of spare replacement transducers required is minimal. Moreover, sensors can be replaced in an online control system without disrupting the network. In addition, by analysing both the transmitted and reflected signals, problems associated with optical power fluctuations are eliminated and the intensity of the sensor signals is increased through differential amplification. Overall, the research addresses the limitations of conventional electrical sensors, such as susceptibility to corrosive damage in wet and corrosive environments, and risk of causing an explosion in hazardous environments, as well as the limitations of current stand-alone optical fibre sensor systems. This thesis supports more alert, reliable, affordable, and coordinated, control and monitoring systems in an on-line environment

    Fiber optic sensors for industry and military applications

    Get PDF
    Fiber optic sensors (FOSs) have been widely used for measuring various physical and chemical measurands owing to their unique advantages over traditional sensors such as small size, high resolution, distributed sensing capabilities, and immunity to electromagnetic interference. This dissertation focuses on the development of robust FOSs with ultrahigh sensitivity and their applications in industry and military areas. Firstly, novel fiber-optic extrinsic Fabry-Perot interferometer (EFPI) inclinometers for one- and two-dimensional tilt measurements with 20 nrad resolution were demonstrated. Compared to in-line fiber optic inclinometers, an extrinsic sensing motif was used in our prototype inclinometer. The variations in tilt angle of the inclinometer was converted into the cavity length changes of the EFPI which can be accurately measured with high resolution. The developed fiber optic inclinometers showed high resolution and great temperature stability in both experiments and practical applications. Secondly, a smart helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for real-time sensing of blunt-force impact events to helmets. The combination of the transient impact data from FBG and the analyses using machine-learning model provides accurate predictions of the magnitudes, the directions and the types of the impact events. The use of the developed smart helmet system can serve as an early-stage intervention strategy for mitigating and managing traumatic brain injuries within the Golden Hour --Abstract, page iv

    Distributed Fiber Optic Gas Sensing for Harsh Environment

    Full text link

    Optical Fiber Sensors for Temperature and Strain Measurement

    Get PDF
    Optical fiber sensors have already been developed from the experimental stage to practical applications in the past 20 years. There is no doubt that this technology can bring a wealth of applications, ranging from sensors in medical industry, aerospace and wind-energy industries, through to distributed sensors in oil and gas industry. Among a large amount of physical and chemical parameters which optical fiber sensors could measure, temperature and strain are the most widely studied. This thesis presents several low-cost optical fiber sensor configurations primarily for temperature and strain measurement. Several basic optical fiber components which are good candidates as optical fiber sensors are used in our experiments, such as fiber Bragg gratings (FBGs), multimode fibers (MMFs), small-core dispersion compensation fibers (SCDCFs), high-birefringence fiber loop mirrors (HBFLMs), and polarization-maintaining photonic crystal fibers (PMPCFs). Temperature and strain cross sensitivity is a crucial issue when designing high performance optical fiber sensors, since most of the sensing components are both sensitive to temperature and strain. This would introduce an error when measuring each of them independently. We developed several schemes to overcome this problem by cascading an FBG and a section of MMF, inserting an FBG into an HBFLM, and space division multiplexing two HBFLMs. By measuring the wavelength shifts of the two independent components' spectra in each scheme, simultaneous measurement of temperature and strain could be achieved. However, all the above schemes need optical spectrum analyzers to monitor the spectral information, which increases the cost of the system and limits the operation speed. In order to avoid using optical spectrum analyzers, we use an intensity-based interrogation method with MMFs and HBFLMs as edge filters. By measuring power ratio changes, instead of monitoring spectra shifts, simultaneous measurement of temperature and strain could be realized with a low cost and high speed. The resolutions of the above five configurations are between 0.26 - 1.2 ^oC in temperature and 9.21 - 29.5 με in strain, which are sufficient for certain applications. We also investigate the sensing applications with the SCDCF. Since the cutoff wavelength of this kind of fiber is around 1663 nm, which makes it naturally an MMF in the wavelength range of 1550 nm. By slightly offsetting the core of the SCDCF with respect to that of the standard single-mode fiber (SMF), a high extinction ratio could be achieved with almost 9 dB. When a lateral force (lateral strain) applied on the SCDCF, extinction ratio will decrease. The change of the extinction ratio is almost independent of temperature variation. The measured extinction ratio change has a good quadratic relationship with respect to applied lateral force. This feature could be used to measure lateral force (lateral strain). In addition, we also use this feature to realize simultaneous measurement of both the longitudinal strain and lateral strain, since the applied longitudinal strain results in the whole spectrum shift. Moreover, a miniature high temperature sensor could also be made using the SCDCF. One end of a 4-mm long SCDCF is spliced directly to SMF with the other end cleaved. By monitoring the reflection spectrum of the SCDCF, temperature information could be obtained. This sensing head is very compact and could realize high temperature measurement up to 600 ^oC. Recently, a kind of PMPCF has been found to have very small responses to temperature change. This offers an opportunity to measure other parameters without considering temperature influence. We construct a compact 7-mm long transmission-type sensor with this kind of PMPCF. The interference spectrum generated by the coupling of cladding modes and core mode is obtained by slightly offsetting the PMPCF core to SMF core. The experiment shows that the interference spectrum is almost unchanged within the temperature range of 25-60 ^oC. The presented sensor has the potential to be used to measure strain and refractive index in the normal environment without temperature discrimination for practical applications

    POF 2016: 25th International Conference on Plastic Optical Fibres - proceedings

    Get PDF
    corecore