502 research outputs found

    Suspended-core fibers for sensing applications

    Get PDF
    A brief review on suspended-core fibers for sensing applications is presented. A historical overview over the previous ten years about this special designed microstructure optical fiber is described. This fiber presents attractive optical properties for chemical/biological or gas measurement, but it can be further explored for alternative sensing solutions, namely, in-fiber interferometers based on the suspended-core or suspended-multi-core fiber, for physical parameter monitoring.info:eu-repo/semantics/publishedVersio

    Photonic Crystal Fiber–Based Interferometric Sensors

    Get PDF
    Photonic crystal fibers (PCFs), also known as microstructured optical fibers, are a highlighted invention of optical fiber technology which have unveiled a new domain of manipulating light in engineered fiber waveguides with unparalleled flexibility and controllability. Since the report of the first fabricated PCF in 1996, research in PCFs has resulted in numerous explorations, development and commercialization of PCF-based technologies and applications. PCFs contain axially aligned air channels which provide a large degree of freedom in design to achieve a variety of peculiar properties; numerous PCF-based sensors have been proposed, developed and demonstrated for a broad range of sensing applications. In this chapter, we will review the field of research on design, development and experimental achievement of PCF-based interferometric sensors for physical and biomedical sensing applications

    Interferometric Fiber Optic Sensors

    Get PDF
    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair

    In-line Mach-Zehnder interferometer with D-shaped fiber grating for temperature-discriminated directional curvature measurement

    Get PDF
    A high-sensitivity curvature sensing configuration is implemented by using a fiber Mach-Zehnder interferometer (MZI) with D-shaped fiber Bragg grating (FBG). A segment of D-shaped fiber is fusion spliced into a single mode fiber at both sides, and then a short FBG is inscribed in the D-shaped fiber. The fiber device yields a significant spectrum sensitivity as high as 87.7 nm/m -1 to the ultralow curvature range from 0 to 0.3 m -1 , and can distinguish the orientation of curvature experienced by the fiber as the attenuation dip producing either a blue or red wavelength shift, by virtue of the asymmetry of D-shaped fiber cladding. In addition, by tracking both resonant wavelengths of the MZI and embedded FBG, the temperature and curvature can be measured simultaneously

    Interferometric fiber-optic bending / nano-displacement sensor using plastic dual-core fiber

    Full text link
    We demonstrate an interferometric fiber-optic bending/micro-displacement sensor based on a plastic dual-core fiber with one end coated with a silver mirror. The two fiber cores are first excited with the same laser beam, the light in each core is then back-reflected at the mirror-coated fiber-end, and, finally, the light from the two cores is made to interfere at the coupling end. Bending of the fiber leads to shifting interference fringes that can be interrogated with a slit and a single photodetector. We find experimentally that the resolution of our bending sensor is ~3x10-4 m-1 for sensing of bending curvature, as well as ~70 nm for sensing of displacement of the fiber tip. We demonstrate operation of our sensor using two examples. One is weighting of the individual micro-crystals of salt, while the other one is monitoring dynamics of isopropanol evaporation

    Novel Specialty Optical Fibers and Applications

    Get PDF
    Novel Specialty Optical Fibers and Applications focuses on the latest developments in specialty fiber technology and its applications. The aim of this reprint is to provide an overview of specialty optical fibers in terms of their technological developments and applications. Contributions include:1. Specialty fibers composed of special materials for new functionalities and applications in new spectral windows.2. Hollow-core fiber-based applications.3. Functionalized fibers.4. Structurally engineered fibers.5. Specialty fibers for distributed fiber sensors.6. Specialty fibers for communications
    • 

    corecore