3,933 research outputs found

    Propagating Conjunctions of AllDifferent Constraints

    Full text link
    We study propagation algorithms for the conjunction of two AllDifferent constraints. Solutions of an AllDifferent constraint can be seen as perfect matchings on the variable/value bipartite graph. Therefore, we investigate the problem of finding simultaneous bipartite matchings. We present an extension of the famous Hall theorem which characterizes when simultaneous bipartite matchings exists. Unfortunately, finding such matchings is NP-hard in general. However, we prove a surprising result that finding a simultaneous matching on a convex bipartite graph takes just polynomial time. Based on this theoretical result, we provide the first polynomial time bound consistency algorithm for the conjunction of two AllDifferent constraints. We identify a pathological problem on which this propagator is exponentially faster compared to existing propagators. Our experiments show that this new propagator can offer significant benefits over existing methods.Comment: AAAI 2010, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligenc

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Games of capacities : a (close) look to Nash Equilibria

    Get PDF
    The paper studies two games of capacity manipulation in hospital-intern markets. The focus is on the stability of Nash equilibrium outcomes. We provide minimal necessary and sufficient conditions guaranteeing the existence of pure strategy Nash Equilibria and the stability of outcomes

    Exponential Separation of Quantum and Classical Non-Interactive Multi-Party Communication Complexity

    Full text link
    We give the first exponential separation between quantum and classical multi-party communication complexity in the (non-interactive) one-way and simultaneous message passing settings. For every k, we demonstrate a relational communication problem between k parties that can be solved exactly by a quantum simultaneous message passing protocol of cost O(log n) and requires protocols of cost n^{c/k^2}, where c>0 is a constant, in the classical non-interactive one-way message passing model with shared randomness and bounded error. Thus our separation of corresponding communication classes is superpolynomial as long as k=o(\sqrt{\log n / \log\log n}) and exponential for k=O(1)

    Acyclicity and singleton cores in matching markets

    Get PDF
    This paper analyzes the role of acyclicity in singleton cores. We show that the absence of simultaneous cycles is a sufficient condition for the existence of singleton cores. Furthermore, acyclicity in the preferences of either side of the market is a minimal condition that guarantees the existence of singleton cores. If firms or workers preferences are acyclical, unique stable matching is obtained through a procedure that resembles a serial dictatorship. Thus, acyclicity generalizes the notion of common preferences. It follows that if the firms or workers preferences are acyclical, unique stable matching is strongly efficient for the other side of the marketStable matching, Acyclicity, Singleton cores
    corecore