17,360 research outputs found

    EEG correlated functional MRI and postoperative outcome in focal epilepsy

    Get PDF
    Background: The main challenge in assessing patients with epilepsy for resective surgery is localising seizure onset. Frequently, identification of the irritative and seizure onset zones requires invasive EEG. EEG correlated functional MRI (EEG-fMRI) is a novel imaging technique which may provide localising information with regard to these regions. In patients with focal epilepsy, interictal epileptiform discharge (IED) correlated blood oxygen dependent level (BOLD) signal changes were observed in approximately 50% of patients in whom IEDs are recorded. In 70%, these are concordant with expected seizure onset defined by non-invasive electroclinical information. Assessment of clinical validity requires post-surgical outcome studies which have, to date, been limited to case reports of correlation with intracranial EEG. The value of EEG-fMRI was assessed in patients with focal epilepsy who subsequently underwent epilepsy surgery, and IED correlated fMRI signal changes were related to the resection area and clinical outcome. Methods: Simultaneous EEG-fMRI was recorded in 76 patients undergoing presurgical evaluation and the locations of IED correlated preoperative BOLD signal change were compared with the resected area and postoperative outcome. Results: 21 patients had activations with epileptic activity on EEG-fMRI and 10 underwent surgical resection. Seven of 10 patients were seizure free following surgery and the area of maximal BOLD signal change was concordant with resection in six of seven patients. In the remaining three patients, with reduced seizure frequency post-surgically, areas of significant IED correlated BOLD signal change lay outside the resection. 42 of 55 patients who had no IED related activation underwent resection. Conclusion: These results show the potential value of EEG-fMRI in presurgical evaluation

    Near minimum time path planning for bearing-only localisation and mapping

    Full text link
    The main contribution of this paper is an algorithm for integrating motion planning and simultaneous localisation and mapping (SLAM). Accuracy of the maps and the robot locations computed using SLAM is strongly dependent on the characteristics of the environment, for example feature density, as well as the speed and direction of motion of the robot. Appropriate control of the robot motion is particularly important in bearing-only SLAM, where the information from a moving sensor is essential. In this paper a near minimum time path planning algorithm with a finite planning horizon is proposed for bearing-only SLAM. The objective of the algorithm is to achieve a predefined mapping precision while maintaining acceptable vehicle location uncertainty in the minimum time. Simulation results have shown the effectiveness of the proposed method. © 2005 IEEE

    RobotAssist - A platform for human robot interaction research

    Full text link
    This paper presents RobotAssist, a robotic platform designed for use in human robot interaction research and for entry into Robocup@Home competition. The core autonomy of the system is implemented as a component based software framework that allows for integration of operating system independent components, is designed to be expandable and integrates several layers of reasoning. The approaches taken to develop the core capabilities of the platform are described, namely: path planning in a social context, Simultaneous Localisation and Mapping (SLAM), human cue sensing and perception, manipulatable object detection and manipulation

    Detection of pathological high-frequency oscillations in refractory epilepsy patients undergoing simultaneous stereo-electroencephalography and magnetoencephalography

    Get PDF
    BACKGROUND: Stereo-electroencephalography (SEEG) and magnetoencephalography (MEG) have generally been used independently as part of the pre-surgical evaluation of drug-resistant epilepsy (DRE) patients. However, the possibility of simultaneously employing these recording techniques to determine whether MEG has the potential of offering the same information as SEEG less invasively, or whether it could offer a greater spatial indication of the epileptogenic zone (EZ) to aid surgical planning, has not been previously evaluated. METHODS: Data from 24 paediatric and adult DRE patients, undergoing simultaneous SEEG and MEG as part of their pre-surgical evaluation, was analysed employing manual and automated high-frequency oscillations (HFOs) detection, and spectral and source localisation analyses. RESULTS: Twelve patients (50%) were included in the analysis (4 males; mean age=25.08 years) and showed interictal SEEG and MEG HFOs. HFOs detection was concordant between the two recording modalities, but SEEG displayed higher ability of differentiating between deep and superficial epileptogenic sources. Automated HFO detector in MEG recordings was validated against the manual MEG detection method. Spectral analysis revealed that SEEG and MEG detect distinct epileptic events. The EZ was well correlated with the simultaneously recorded data in 50% patients, while 25% patients displayed poor correlation or discordance. CONCLUSIONS: MEG recordings can detect HFOs, and simultaneous use of SEEG and MEG HFO identification facilitates EZ localisation during the presurgical planning stage for DRE patients. Further studies are necessary to validate these findings and support the translation of automated HFO detectors into routine clinical practice

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning

    Trajectory planning for feature-based localisation and mapping

    Full text link
    University of Technology, Sydney. Faculty of Engineering.Localisation and mapping are two fundamental tasks required for many autonomous mobile robot applications. Robot motion has a significant impact on the quality of the outcomes of any localisation and mapping algorithm due to the fact that the information acquired through observing the environment depends on the viewpoint from which the observations are made. This thesis develops mobile robot trajectory planning strategies that maximise the information gain, thereby leading to more effective localisation and mapping outcomes. In this thesis, the trajectory planning problems are formulated as optimal control problems where the control objective is to maximise the information gain or to minimise the uncertainty of the robot location and/or the map estimate. As not all the information can be predicted before observations are made, the optimal control problems involve gradually identified models. Model Predictive Control (MPC) is proposed to solve the control problems as it exploits updated information in the planning at each time step. Two optimisation strategies are implemented in the multi-step optimization of MPC planning. The first is an Exhaustive Expansion Tree Search (EETS) and the second combines this search with Sequential Quadratic Programming (SQP). Analyses of the results show that EETS provides a near optimal solution. Three trajectory planning problems are considered. The first problem is trajectory planning for multiple robots in the task of target localisation. The robots are equipped with bearing-only sensors and their locations are assumed to be provided by an external source. Given initial location estimates with large uncertainty, the task is to pinpoint the locations of multiple targets within a prescribed terminal time. An Extended Information Filter (EIF) is used to estimate the locations of the targets. The second trajectory planning problem considers the task of point feature based Simultaneous Localisation and Mapping (SLAM) for a single robot. Here, the robot is to map a given area within a prescribed terminal time. An Extended Kalman Filter (EKF) is used to estimate the robot pose and feature locations. The final trajectory planning problem extends the SLAM problem further to the mapping of line features. As simply applying EKF to line-feature SLAM produces inconsistent estimates, a Smoothing and Mapping (SAM) algorithm is used as a viable alternative. In these SLAM problems, coverage is another important performance index. As MPC with a few steps look-ahead is predominately a local planner without any long term planning or any explicit strategy for exploration, an attractor-based strategy is developed to improve its performance. With the addition of the attractor, coverage is shown to be much improved. On a Pioneer2DX robot, real-time line-feature localisation and mapping with SAM is demonstrated

    The clinical application of PET/CT: a contemporary review

    Get PDF
    The combination of positron emission tomography (PET) scanners and x-ray computed tomography (CT) scanners into a single PET/CT scanner has resulted in vast improvements in the diagnosis of disease, particularly in the field of oncology. A decade on from the publication of the details of the first PET/CT scanner, we review the technology and applications of the modality. We examine the design aspects of combining two different imaging types into a single scanner, and the artefacts produced such as attenuation correction, motion and CT truncation artefacts. The article also provides a discussion and literature review of the applications of PET/CT to date, covering detection of tumours, radiotherapy treatment planning, patient management, and applications external to the field of oncology
    • …
    corecore