919 research outputs found

    人の行動分類のための教師なし転移学習

    Get PDF
    筑波大学 (University of Tsukuba)201

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Sensing Human Sentiment via Social Media Images: Methodologies and Applications

    Get PDF
    abstract: Social media refers computer-based technology that allows the sharing of information and building the virtual networks and communities. With the development of internet based services and applications, user can engage with social media via computer and smart mobile devices. In recent years, social media has taken the form of different activities such as social network, business network, text sharing, photo sharing, blogging, etc. With the increasing popularity of social media, it has accumulated a large amount of data which enables understanding the human behavior possible. Compared with traditional survey based methods, the analysis of social media provides us a golden opportunity to understand individuals at scale and in turn allows us to design better services that can tailor to individuals’ needs. From this perspective, we can view social media as sensors, which provides online signals from a virtual world that has no geographical boundaries for the real world individual's activity. One of the key features for social media is social, where social media users actively interact to each via generating content and expressing the opinions, such as post and comment in Facebook. As a result, sentiment analysis, which refers a computational model to identify, extract or characterize subjective information expressed in a given piece of text, has successfully employs user signals and brings many real world applications in different domains such as e-commerce, politics, marketing, etc. The goal of sentiment analysis is to classify a user’s attitude towards various topics into positive, negative or neutral categories based on textual data in social media. However, recently, there is an increasing number of people start to use photos to express their daily life on social media platforms like Flickr and Instagram. Therefore, analyzing the sentiment from visual data is poise to have great improvement for user understanding. In this dissertation, I study the problem of understanding human sentiments from large scale collection of social images based on both image features and contextual social network features. We show that neither visual features nor the textual features are by themselves sufficient for accurate sentiment prediction. Therefore, we provide a way of using both of them, and formulate sentiment prediction problem in two scenarios: supervised and unsupervised. We first show that the proposed framework has flexibility to incorporate multiple modalities of information and has the capability to learn from heterogeneous features jointly with sufficient training data. Secondly, we observe that negative sentiment may related to human mental health issues. Based on this observation, we aim to understand the negative social media posts, especially the post related to depression e.g., self-harm content. Our analysis, the first of its kind, reveals a number of important findings. Thirdly, we extend the proposed sentiment prediction task to a general multi-label visual recognition task to demonstrate the methodology flexibility behind our sentiment analysis model.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Multilingual Neural Translation

    Get PDF
    Machine translation (MT) refers to the technology that can automatically translate contents in one language into other languages. Being an important research area in the field of natural language processing, machine translation has typically been considered one of most challenging yet exciting problems. Thanks to research progress in the data-driven statistical machine translation (SMT), MT is recently capable of providing adequate translation services in many language directions and it has been widely deployed in various practical applications and scenarios. Nevertheless, there exist several drawbacks in the SMT framework. The major drawbacks of SMT lie in its dependency in separate components, its simple modeling approach, and the ignorance of global context in the translation process. Those inherent drawbacks prevent the over-tuned SMT models to gain any noticeable improvements over its horizon. Furthermore, SMT is unable to formulate a multilingual approach in which more than two languages are involved. The typical workaround is to develop multiple pair-wise SMT systems and connect them in a complex bundle to perform multilingual translation. Those limitations have called out for innovative approaches to address them effectively. On the other hand, it is noticeable how research on artificial neural networks has progressed rapidly since the beginning of the last decade, thanks to the improvement in computation, i.e faster hardware. Among other machine learning approaches, neural networks are known to be able to capture complex dependencies and learn latent representations. Naturally, it is tempting to apply neural networks in machine translation. First attempts revolve around replacing SMT sub-components by the neural counterparts. Later attempts are more revolutionary by fundamentally changing the whole core of SMT with neural networks, which is now popularly known as neural machine translation (NMT). NMT is an end-to-end system which directly estimate the translation model between the source and target sentences. Furthermore, it is later discovered to capture the inherent hierarchical structure of natural language. This is the key property of NMT that enables a new training paradigm and a less complex approach for multilingual machine translation using neural models. This thesis plays an important role in the evolutional course of machine translation by contributing to the transition of using neural components in SMT to the completely end-to-end NMT and most importantly being the first of the pioneers in building a neural multilingual translation system. First, we proposed an advanced neural-based component: the neural network discriminative word lexicon, which provides a global coverage for the source sentence during the translation process. We aim to alleviate the problems of phrase-based SMT models that are caused by the way how phrase-pair likelihoods are estimated. Such models are unable to gather information from beyond the phrase boundaries. In contrast, our discriminative word lexicon facilitates both the local and global contexts of the source sentences and models the translation using deep neural architectures. Our model has improved the translation quality greatly when being applied in different translation tasks. Moreover, our proposed model has motivated the development of end-to-end NMT architectures later, where both of the source and target sentences are represented with deep neural networks. The second and also the most significant contribution of this thesis is the idea of extending an NMT system to a multilingual neural translation framework without modifying its architecture. Based on the ability of deep neural networks to modeling complex relationships and structures, we utilize NMT to learn and share the cross-lingual information to benefit all translation directions. In order to achieve that purpose, we present two steps: first in incorporating language information into training corpora so that the NMT learns a common semantic space across languages and then force the NMT to translate into the desired target languages. The compelling aspect of the approach compared to other multilingual methods, however, lies in the fact that our multilingual extension is conducted in the preprocessing phase, thus, no change needs to be done inside the NMT architecture. Our proposed method, a universal approach for multilingual MT, enables a seamless coupling with any NMT architecture, thus makes the multilingual expansion to the NMT systems effortlessly. Our experiments and the studies from others have successfully employed our approach with numerous different NMT architectures and show the universality of the approach. Our multilingual neural machine translation accommodates cross-lingual information in a learned common semantic space to improve altogether every translation direction. It is then effectively applied and evaluated in various scenarios. We develop a multilingual translation system that relies on both source and target data to boost up the quality of a single translation direction. Another system could be deployed as a multilingual translation system that only requires being trained once using a multilingual corpus but is able to translate between many languages simultaneously and the delivered quality is more favorable than many translation systems trained separately. Such a system able to learn from large corpora of well-resourced languages, such as English → German or English → French, has proved to enhance other translation direction of low-resourced language pairs like English → Lithuania or German → Romanian. Even more, we show that kind of approach can be applied to the extreme case of zero-resourced translation where no parallel data is available for training without the need of pivot techniques. The research topics of this thesis are not limited to broadening application scopes of our multilingual approach but we also focus on improving its efficiency in practice. Our multilingual models have been further improved to adequately address the multilingual systems whose number of languages is large. The proposed strategies demonstrate that they are effective at achieving better performance in multi-way translation scenarios with greatly reduced training time. Beyond academic evaluations, we could deploy the multilingual ideas in the lecture-themed spontaneous speech translation service (Lecture Translator) at KIT. Interestingly, a derivative product of our systems, the multilingual word embedding corpus available in a dozen of languages, can serve as a useful resource for cross-lingual applications such as cross-lingual document classification, information retrieval, textual entailment or question answering. Detailed analysis shows excellent performance with regard to semantic similarity metrics when using the embeddings on standard cross-lingual classification tasks

    Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

    Get PDF
    Indonesian and Malay are underrepresented in the development of natural language processing (NLP) technologies and available resources are difficult to find. A clear picture of existing work can invigorate and inform how researchers conceptualise worthwhile projects. Using an education sector project to motivate the study, we conducted a wide-ranging overview of Indonesian and Malay human language technologies and corpus work. We charted 657 included studies according to Hirschberg and Manning's 2015 description of NLP, concluding that the field was dominated by exploratory corpus work, machine reading of text gathered from the Internet, and sentiment analysis. In this paper, we identify most published authors and research hubs, and make a number of recommendations to encourage future collaboration and efficiency within NLP in Indonesian and Malay

    Enhancing deep transfer learning for image classification

    Get PDF
    Though deep learning models require a large amount of labelled training data for yielding high performance, they are applied to accomplish many computer vision tasks such as image classification. Current models also do not perform well across different domain settings such as illumination, camera angle and real-to-synthetic. Thus the models are more likely to misclassify unknown classes as known classes. These issues challenge the supervised learning paradigm of the models and encourage the study of transfer learning approaches. Transfer learning allows us to utilise the knowledge acquired from related domains to improve performance on a target domain. Existing transfer learning approaches lack proper high-level source domain feature analyses and are prone to negative transfers for not exploring proper discriminative information across domains. Current approaches also lack at discovering necessary visual-semantic linkage and has a bias towards the source domain. In this thesis, to address these issues and improve image classification performance, we make several contributions to three different deep transfer learning scenarios, i.e., the target domain has i) labelled data; no labelled data; and no visual data. Firstly, for improving inductive transfer learning for the first scenario, we analyse the importance of high-level deep features and propose utilising them in sequential transfer learning approaches and investigating the suitable conditions for optimal performance. Secondly, to improve image classification across different domains in an open set setting by reducing negative transfers (second scenario), we propose two novel architectures. The first model has an adaptive weighting module based on underlying domain distinctive information, and the second model has an information-theoretic weighting module to reduce negative transfers. Thirdly, to learn visual classifiers when no visual data is available (third scenario) and reduce source domain bias, we propose two novel models. One model has a new two-step dense attention mechanism to discover semantic attribute-guided local visual features and mutual learning loss. The other model utilises bidirectional mapping and adversarial supervision to learn the joint distribution of source-target domains simultaneously. We propose a new pointwise mutual information dependant loss in the first model and a distance-based loss in the second one for handling source domain bias. We perform extensive evaluations on benchmark datasets and demonstrate the proposed models outperform contemporary works.Doctor of Philosoph

    Prepared for a world that no longer exists : white Afrikaner males revise identity for a transformed world

    Get PDF
    Includes bibliographical references (leaves 84-87).Following the peaceful transition in 1994 from apartheid to democracy, and the political realignment of power from the Afrikaner minority to the Black majority, South Africa has been thrust into a social climate of radical and far reaching change. As one formerly advantaged group in the new dispensation, white Afrikaners are facing new and often bewildering challenges as they struggle to carve out an appropriate space for themselves in the new political ethos of non-racialism and equality for all. This study examines how a particular group of white Afrikaner men between the ages of 28-42 in the town of Stellenbosch in the Western Cape, are negotiating their way in post-apartheid South Africa

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p
    corecore