2,487 research outputs found

    Video-rate computational super-resolution and integral imaging at longwave-infrared wavelengths

    Get PDF
    We report the first computational super-resolved, multi-camera integral imaging at long-wave infrared (LWIR) wavelengths. A synchronized array of FLIR Lepton cameras was assembled, and computational super-resolution and integral-imaging reconstruction employed to generate video with light-field imaging capabilities, such as 3D imaging and recognition of partially obscured objects, while also providing a four-fold increase in effective pixel count. This approach to high-resolution imaging enables a fundamental reduction in the track length and volume of an imaging system, while also enabling use of low-cost lens materials.Comment: Supplementary multimedia material in http://dx.doi.org/10.6084/m9.figshare.530302

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    Capillary networks and follicular marginal zones in human spleens : Three-dimensional models based on immunostained serial sections

    Get PDF
    We have reconstructed small parts of capillary networks in the human splenic white pulp using serial sections immunostained for CD34 alone or for CD34 and CD271. The three-dimensional (3D) models show three types of interconnected networks: a network with very few long capillaries inside the white pulp originating from central arteries, a denser network surrounding follicles plus periarterial T-cell regions and a network in the red pulp. Capillaries of the perifollicular network and the red pulp network have open ends. Perifollicular capillaries form an arrangement similar to a basketball net located in the outer marginal zone. The marginal zone is defined by MAdCAM-1+ marginal reticular stromal cells. Perifollicular capillaries are connected to red pulp capillaries surrounded by CD271+ stromal capillary sheath cells. The scarcity of capillaries inside the splenic white pulp is astonishing, as non-polarised germinal centres with proliferating B-cells occur in adult human spleens. We suggest that specialized stromal marginal reticular cells form a barrier inside the splenic marginal zone, which together with the scarcity of capillaries guarantees the maintenance of gradients necessary for positioning of migratory B- and T-lymphocytes in the human splenic white pulp

    Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 1452, doi:10.1038/s41467-017-01250-8.Light-sheet fluorescence microscopy (LSFM) enables high-speed, high-resolution, and gentle imaging of live specimens over extended periods. Here we describe a technique that improves the spatiotemporal resolution and collection efficiency of LSFM without modifying the underlying microscope. By imaging samples on reflective coverslips, we enable simultaneous collection of four complementary views in 250 ms, doubling speed and improving information content relative to symmetric dual-view LSFM. We also report a modified deconvolution algorithm that removes associated epifluorescence contamination and fuses all views for resolution recovery. Furthermore, we enhance spatial resolution (to <300 nm in all three dimensions) by applying our method to single-view LSFM, permitting simultaneous acquisition of two high-resolution views otherwise difficult to obtain due to steric constraints at high numerical aperture. We demonstrate the broad applicability of our method in a variety of samples, studying mitochondrial, membrane, Golgi, and microtubule dynamics in cells and calcium activity in nematode embryos.This work was supported by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health. P.L. and H.S. acknowledge summer support from the Marine Biological Laboratory at Woods Hole, through the Whitman- and Fellows- program. P.L. acknowledges support from NIH National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH) under grant number R01EB017293. C.S. acknowledges funding from the National Institute of General Medical Sciences of NIH under Award Number R25GM109439 (Project Title: University of Chicago Initiative for Maximizing Student Development [IMSD]) and NIBIB under grant number T32 EB002103. Partial funding for the computation in this work was provided by NIH grant numbers S10 RRO21039 and P30 CA14599. A.U. and I.R.-S. were supported by the NSF grant number 1607645
    • …
    corecore