3,340 research outputs found

    Simultaneous Graph Embeddings with Fixed Edges

    Get PDF
    We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open

    Simultaneous Graph Embeddings with Fixed Edges

    Get PDF
    We study the problem of simultaneously embedding several graphs on the same vertex set in such a way that edges common to two or more graphs are represented by the same curve. This problem is known as simultaneously embedding graphs with fixed edges. We show that this problem is closely related to the weak realizability problem: Can a graph be drawn such that all edge crossings occur in a given set of edge pairs? By exploiting this relationship we can explain why the simultaneous embedding problem is challenging, both from a computational and a combinatorial point of view. More precisely, we prove that simultaneously embedding graphs with fixed edges is NP-complete even for three planar graphs. For two planar graphs the complexity status is still open

    Simultaneous Embeddings with Few Bends and Crossings

    Full text link
    A simultaneous embedding with fixed edges (SEFE) of two planar graphs RR and BB is a pair of plane drawings of RR and BB that coincide when restricted to the common vertices and edges of RR and BB. We show that whenever RR and BB admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if RR and BB are trees then one bend per edge and four crossings per edge pair suffice (and one bend per edge is sometimes necessary), (2) if RR is a planar graph and BB is a tree then six bends per edge and eight crossings per edge pair suffice, and (3) if RR and BB are planar graphs then six bends per edge and sixteen crossings per edge pair suffice. Our results improve on a paper by Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and Crossings" accepted at GD '1

    Simultaneous Graph Representation Problems

    Get PDF
    Many graphs arising in practice can be represented in a concise and intuitive way that conveys their structure. For example: A planar graph can be represented in the plane with points for vertices and non-crossing curves for edges. An interval graph can be represented on the real line with intervals for vertices and intersection of intervals representing edges. The concept of ``simultaneity'' applies for several types of graphs: the idea is to find representations for two graphs that share some common vertices and edges, and ensure that the common vertices and edges are represented the same way. Simultaneous representation problems arise in any situation where two related graphs should be represented consistently. A main instance is for temporal relationships, where an old graph and a new graph share some common parts. Pairs of related graphs arise in many other situations. For example, two social networks that share some members; two schedules that share some events, overlap graphs of DNA fragments of two similar organisms, circuit graphs of two adjacent layers on a computer chip etc. In this thesis, we study the simultaneous representation problem for several graph classes. For planar graphs the problem is defined as follows. Let G1 and G2 be two graphs sharing some vertices and edges. The simultaneous planar embedding problem asks whether there exist planar embeddings (or drawings) for G1 and G2 such that every vertex shared by the two graphs is mapped to the same point and every shared edge is mapped to the same curve in both embeddings. Over the last few years there has been a lot of work on simultaneous planar embeddings, which have been called `simultaneous embeddings with fixed edges'. A major open question is whether simultaneous planarity for two graphs can be tested in polynomial time. We give a linear-time algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is either common to all graphs or belongs to exactly one of them. Next we introduce a new notion of simultaneity for intersection graph classes (interval graphs, chordal graphs etc.) and for comparability graphs. For interval graphs, the problem is defined as follows. Let G1 and G2 be two interval graphs sharing some vertices I and the edges induced by I. G1 and G2 are said to be `simultaneous interval graphs' if there exist interval representations of G1 and G2 such that any vertex of I is assigned to the same interval in both the representations. The `simultaneous representation problem' for interval graphs asks whether G1 and G2 are simultaneous interval graphs. The problem is defined in a similar way for other intersection graph classes. For comparability graphs and any intersection graph class, we show that the simultaneous representation problem for the graph class is equivalent to a graph augmentation problem: given graphs G1 and G2, sharing vertices I and the corresponding induced edges, do there exist edges E' between G1-I and G2-I such that the graph G1 U G_2 U E' belongs to the graph class. This equivalence implies that the simultaneous representation problem is closely related to other well-studied classes in the literature, namely, sandwich graphs and probe graphs. We give efficient algorithms for solving the simultaneous representation problem for interval graphs, chordal graphs, comparability graphs and permutation graphs. Further, our algorithms for comparability and permutation graphs solve a more general version of the problem when there are multiple graphs, any two of which share the same common graph. This version of the problem also generalizes probe graphs

    A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem

    Full text link
    The clustered planarity problem (c-planarity) asks whether a hierarchically clustered graph admits a planar drawing such that the clusters can be nicely represented by regions. We introduce the cd-tree data structure and give a new characterization of c-planarity. It leads to efficient algorithms for c-planarity testing in the following cases. (i) Every cluster and every co-cluster (complement of a cluster) has at most two connected components. (ii) Every cluster has at most five outgoing edges. Moreover, the cd-tree reveals interesting connections between c-planarity and planarity with constraints on the order of edges around vertices. On one hand, this gives rise to a bunch of new open problems related to c-planarity, on the other hand it provides a new perspective on previous results.Comment: 17 pages, 2 figure

    Simultaneous Orthogonal Planarity

    Full text link
    We introduce and study the OrthoSEFEk\textit{OrthoSEFE}-k problem: Given kk planar graphs each with maximum degree 4 and the same vertex set, do they admit an OrthoSEFE, that is, is there an assignment of the vertices to grid points and of the edges to paths on the grid such that the same edges in distinct graphs are assigned the same path and such that the assignment induces a planar orthogonal drawing of each of the kk graphs? We show that the problem is NP-complete for k3k \geq 3 even if the shared graph is a Hamiltonian cycle and has sunflower intersection and for k2k \geq 2 even if the shared graph consists of a cycle and of isolated vertices. Whereas the problem is polynomial-time solvable for k=2k=2 when the union graph has maximum degree five and the shared graph is biconnected. Further, when the shared graph is biconnected and has sunflower intersection, we show that every positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore