1,916 research outputs found

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Fault Detection, Isolation and Identification of Autonomous Underwater Vehicles Using Dynamic Neural Networks and Genetic Algorithms

    Get PDF
    The main objective of this thesis is to propose and develop a fault detection, isolation and identification scheme based on dynamic neural networks (DNNs) and genetic algorithm (GA) for thrusters of the autonomous underwater vehicles (AUVs) which provide the force for performing the formation missions. In order to achieve the fault detection task, in this thesis two level of fault detection are proposed, I) Agent-level fault detection (ALFD) and II) Formation-level fault detection (FLFD). The proposed agent-level fault detection scheme includes a dynamic neural network which is trained with absolute measurements and states of each thruster in the AUV. The genetic algorithm is used in order to train the DNN. The results from simulations indicate that although the ALFD scheme can detect the high severity faults, for low severity faults the accuracy is not satisfy our expectations. Therefore, a formation-level fault detection scheme is developed. In the proposed formation-level fault detection scheme, a fault detection unit consist of two dynamic neural networks corresponding to its adjacent neighbors, is employed in each AUV to detect the fault in formation. Each DNN of the fault detection unit is trained with one relative and one absolute measurements. Similar to ALFD scheme, these two DNNs are trained with GA. The simulation results and confusion matrix analysis indicate that our proposed FLFD can detect both low severity and high severity faults with high level of accuracy compare to ALFD scheme. In order to indicate the type and severity of the occurred fault the agent-level and formation-level fault isolation and identification schemes are developed and their performances are compared. In the proposed fault isolation and identification schemes, two neural networks are employed for isolating the type of the fault in the thruster of the AUV and determining the severity of the occurred fault. In the fist step, a multi layer perceptron (MLP) neural network categorize the type of the fault into thruster blocking, flooded thruster and loss of effectiveness in rotor and in the next step a MLP neural network classify the severity into low, medium and high. The neural networks in fault isolation and identification schemes are trained based on genetic algorithm with various data sets which are obtained through different faulty operating condition of the AUV. The simulation results and the confusion matrix analysis indicate that the proposed formation-level fault isolation and identification schemes have a better performance comparing to agent-level schemes and they are capable of isolating and identifying the faults with high level of accuracy and precision

    Cell Separations and Sorting

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.analchem.9b05357.NIBIB Grant P41-EB020594COBRE Grant 5P20GM13042

    The Evolution of Diversity

    Get PDF
    Since the beginning of time, the pre-biological and the biological world have seen a steady increase in complexity of form and function based on a process of combination and re-combination. The current modern synthesis of evolution known as the neo-Darwinian theory emphasises population genetics and does not explain satisfactorily all other occurrences of evolutionary novelty. The authors suggest that symbiosis and hybridisation and the more obscure processes such as polyploidy, chimerism and lateral transfer are mostly overlooked and not featured sufficiently within evolutionary theory. They suggest, therefore, a revision of the existing theory including its language, to accommodate the scientific findings of recent decades

    Smart Gas Sensors: Materials, Technologies, Practical ‎Applications, and Use of Machine Learning – A Review

    Get PDF
    The electronic nose, popularly known as the E-nose, that combines gas sensor arrays (GSAs) with machine learning has gained a strong foothold in gas sensing technology. The E-nose designed to mimic the human olfactory system, is used for the detection and identification of various volatile compounds. The GSAs develop a unique signal fingerprint for each volatile compound to enable pattern recognition using machine learning algorithms. The inexpensive, portable and non-invasive characteristics of the E-nose system have rendered it indispensable within the gas-sensing arena. As a result, E-noses have been widely employed in several applications in the areas of the food industry, health management, disease diagnosis, water and air quality control, and toxic gas leakage detection. This paper reviews the various sensor fabrication technologies of GSAs and highlights the main operational framework of the E-nose system. The paper details vital signal pre-processing techniques of feature extraction, feature selection, in addition to machine learning algorithms such as SVM, kNN, ANN, and Random Forests for determining the type of gas and estimating its concentration in a competitive environment. The paper further explores the potential applications of E-noses for diagnosing diseases, monitoring air quality, assessing the quality of food samples and estimating concentrations of volatile organic compounds (VOCs) in air and in food samples. The review concludes with some challenges faced by E-nose, alternative ways to tackle them and proposes some recommendations as potential future work for further development and design enhancement of E-noses
    • …
    corecore