2,397 research outputs found

    Simultaneous evolution of neural network topologies and weights for classification and regression

    Get PDF
    Artificial Neural Networks (ANNs) are important Data Mining (DM) techniques. Yet, the search for the optimal ANN is a challenging task: the architecture should learn the input-output mapping without overfitting the data and training algorithms tend to get trapped into local minima. Under this scenario, the use of Evolutionary Computation (EC) is a promising alternative for ANN design and training. Moreover, since EC methods keep a pool of solutions, an ensemble can be build by combining the best ANNs. This work presents a novel algorithm for the optimization of ANNs, using a direct representation, a structural mutation operator and Lamarckian evolution. Sixteen real-world classification/regression tasks were used to test this strategy with single and ensemble based versions. Competitive results were achieved when compared with a heuristic model selection and other DM algorithms.Universidade do Minho. Centro Algoritmi.Fundação para a Ciência e a Tecnologia (FCT) - POSI/EIA/59899/2004

    Evolution of neural networks for classification and regression

    Get PDF
    Although Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN algorithms: the first evolves neural topologies while the latter performs simultaneous optimization of architectures and weights. Sixteen real-world tasks were used to test these strategies. Competitive results were achieved when compared with a heuristic model selection and other Data Mining algorithms.Fundação para a Ciência e a Tecnologia (FCT) - projecto POSI/EIA/59899/2004

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Evolutionary optimization of neural networks with heterogeneous computation: study and implementation

    Full text link
    In the optimization of artificial neural networks (ANNs) via evolutionary algorithms and the implementation of the necessary training for the objective function, there is often a trade-off between efficiency and flexibility. Pure software solutions on general-purpose processors tend to be slow because they do not take advantage of the inherent parallelism, whereas hardware realizations usually rely on optimizations that reduce the range of applicable network topologies, or they attempt to increase processing efficiency by means of low-precision data representation. This paper presents, first of all, a study that shows the need of heterogeneous platform (CPU–GPU–FPGA) to accelerate the optimization of ANNs using genetic algorithms and, secondly, an implementation of a platform based on embedded systems with hardware accelerators implemented in Field Pro-grammable Gate Array (FPGA). The implementation of the individuals on a remote low-cost Altera FPGA allowed us to obtain a 3x–4x acceleration compared with a 2.83 GHz Intel Xeon Quad-Core and 6x–7x compared with a 2.2 GHz AMD Opteron Quad-Core 2354.The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.Fe, JD.; Aliaga Varea, RJ.; Gadea Gironés, R. (2015). Evolutionary optimization of neural networks with heterogeneous computation: study and implementation. The Journal of Supercomputing. 71(8):2944-2962. doi:10.1007/s11227-015-1419-7S29442962718Farmahini-Farahani A, Vakili S, Fakhraie SM, Safari S, Lucas C (2010) Parallel scalable hardware implementation of asynchronous discrete particle swarm optimization. Eng Appl Artif Intell 23(2):177–187Curteanu S, Cartwright H (2011) Neural networks applied in chemistry. i. Determination of the optimal topology of multilayer perceptron neural networks. J Chemom 25(10):527–549. doi: 10.1002/cem.1401Islam MM, Sattar MA, Amin MF, Yao X, Murase K (2009) A new adaptive merging and growing algorithm for designing artificial neural networks. Ieee Trans Syst Man Cybern Part B-Cybern 39(3):705–722Han KH, Kim JH (2004) Quantum-inspired evolutionary algorithms with a new termination criterion, h-epsilon gate, and two-phase scheme. Ieee Trans Evol Comput 8(2):156–169Leung FHF, Lam HK, Ling SH, Tam PKS (2003) Tuning of the structure and parameters of a neural network using an improved genetic algorithm. Ieee Trans Neural Netw 14(1):79–88Tsai JT, Chou JH, Liu TK (2006) Tuning the structure and parameters of a neural network by using hybrid taguchi-genetic algorithm. Ieee Trans Neural Netw 17(1):69–80Ludermir TB, Yamazaki A, Zanchettin C (2006) An optimization methodology for neural network weights and architectures. Ieee Trans Neural Netw 17(6):1452–1459Palmes PP, Hayasaka T, Usui S (2005) Mutation-based genetic neural network. Trans Neural Netw 16(3):587–600. doi: 10.1109/TNN.2005.844858Mu T, Jiang J, Wang Y, Goulermas JY (2012) Adaptive data embedding framework for multiclass classification. Ieee Trans Neural Netw Learn Syst 23(8):1291–1303Lu T-C, Yu G-R, Juang J-C (2013) Quantum-based algorithm for optimizing artificial neural networks. IEEE Trans Neural Netw Lear Syst 24(8):1266–1278Yao X (1999) Evolving artificial neural networks. Proc Ieee 87(9):1423–1447Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. Ieee Trans Neural Netw 8(3):694–713Mateo F, Sovilj D, Gadea-Gironés R (2010) Approximate k-NN delta test minimization method using genetic algorithms: application to time series. NEUROCOMPUTING 73(10–12, Sp):2017–2029Hawkins S, He H, Williams G, Baxter R (2002) Outlier detection using replicator neural networks. In: Proceedings of the 5th international conference and data warehousing and knowledge discovery. DaWaK02, pp 170–180Fe J, Aliaga RJ, Gironés RG (2013) Experimental platform for accelerate the training of anns with genetic algorithm and embedded system on fpga. In: IWINAC (2), pp 413–420Prechelt L (1994) Proben1—a set of neural network benchmark problems and benchmarking rules. Technical reportAbbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25:265–281Ahmad F, Isa NAM, Hussain Z, Sulaiman SN (2013) A genetic algorithm-based multi-objective optimization of an artificial neural network classifier for breast cancer diagnosis. Neural Comput Appl 23(5):1427–1435Sankaradas M, Jakkula V, Cadambi S, Chakradhar S, Durdanovic I, Cosatto E, Graf H (2009) A massively parallel coprocessor for convolutional neural networks. In: Application-specific systems, architectures and processors, 2009. ASAP 2009. 20th IEEE international conference on, July, pp 53–60Prado R, Melo J, Oliveira J, Neto A (2012) Fpga based implementation of a fuzzy neural network modular architecture for embedded systems. In: Neural networks (IJCNN), The 2012 international joint conference on, June, pp 1–7Çavuşlu M, Karakuzu C, Sahin S, Yakut M (2011) Neural network training based on fpga with floating point number format and its performance. Neural Comput Appl 20:195–202. doi: 10.1007/s00521-010-0423-3Wu G-D, Zhu Z-W, Lin B-W (2011) Reconfigurable back propagation based neural network architecture. In: Integrated circuits (ISIC), 2011 13th international symposium on, Dec, pp 67–70Pinjare SL, Kumar A (2012) Implementation of neural network back propagation training algorithm on fpga. Int J Comput Appl 52(6): 1–7, August, published by Foundation of Computer Science, New York, USAhttp://www.altera.comAliaga R, Gadea R, Colom R, Cerda J, Ferrando N, Herrero V (2009) A mixed hardware–software approach to flexible artificial neural network training on fpga. In: Systems, architectures, modeling, and simulation, 2009. SAMOS ’09. International symposium on, July, pp 1–8http://www.matlab.co

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Multi-objective evolution of artificial neural networks in multi-class medical diagnosis problems with class imbalance

    Get PDF
    This paper proposes a novel multi-objective optimisation approach to solving both the problem of finding good structural and parametric choices in an ANN and the problem of training a classifier with a heavily skewed data set. The state-of-the-art CMA-PAES-HAGA multi-objective evolutionary algorithm [41] is used to simultaneously optimise the structure, weights, and biases of a population of ANNs with respect to not only the overall classification accuracy, but the classification accuracies of each individual target class. The effectiveness of this approach is then demonstrated on a real-world multi-class problem in medical diagnosis (classification of fetal cardiotocograms) where more than 75% of the data belongs to the majority class and the rest to two other minority classes. The optimised ANN is shown to significantly outperform a standard feed-forward ANN with respect to minority class recognition at the cost of slightly worse performance in terms of overall classification accuracy

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming

    Get PDF
    Machine learning algorithms are inherently multiobjective in nature, where approximation error minimization and model's complexity simplification are two conflicting objectives. We proposed a multiobjective genetic programming (MOGP) for creating a heterogeneous flexible neural tree (HFNT), tree-like flexible feedforward neural network model. The functional heterogeneity in neural tree nodes was introduced to capture a better insight of data during learning because each input in a dataset possess different features. MOGP guided an initial HFNT population towards Pareto-optimal solutions, where the final population was used for making an ensemble system. A diversity index measure along with approximation error and complexity was introduced to maintain diversity among the candidates in the population. Hence, the ensemble was created by using accurate, structurally simple, and diverse candidates from MOGP final population. Differential evolution algorithm was applied to fine-tune the underlying parameters of the selected candidates. A comprehensive test over classification, regression, and time-series datasets proved the efficiency of the proposed algorithm over other available prediction methods. Moreover, the heterogeneous creation of HFNT proved to be efficient in making ensemble system from the final population
    corecore