412 research outputs found

    Low-power spatial computing using dynamic threshold devices

    Get PDF
    Asynchronous spatial computing systems exhibit only localized communication, their overall data-flow being controlled by handshaking. It is therefore straightforward to determine when a particular part of such a system is active. We show that using thin-body double-gate fully depleted SOI transistors, the shift in threshold voltage that can be produced by modulating the back-gate bias is sufficient to reduce subthreshold leakage power by a factor of more than 104 in typical circuits. Using TBFDSOI devices in spatial computing architectures will allow overall power to be greatly reduced while maintaining high performance

    Reducing the Sub-threshold and Gate-tunneling Leakage of SRAM Cells using Dual-Vt and Dual-Tox Assignment

    Full text link

    Optimization and Characterization of CMOS for Ultra Low Power Applications

    Get PDF
    Aggressive voltage scaling into the subthreshold operating region holds great promise for applications with strict energy budget. However, it has been established that higher speed superthreshold device is not suitable for moderate performance subthreshold circuits. The design constraint for selecting Vth and TOX is much more flexible for subthreshold circuits at low voltage level than superthreshold circuits. In order to obtain better performance from a device under subthreshold conditions, it is necessary to investigate and optimize the process and geometry parameters of a Si MOSFET at nanometer technology node. This paper calibrates the fabrication process parameters and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length. Thereafter, the calibrated device for superthreshold application is optimized for better performance under subthreshold conditions using TCAD simulation. The device simulated in this work shows 9.89% improvement in subthreshold slope and 34% advantage in ION/IOFF ratio for the same drive current

    Particle Swarm Optimization Algorithm for Leakage Power Reduction in VLSI Circuits

    Get PDF
     Leakage power is the dominant source of power dissipation innanometer technology. As per the International Technology Roadmap forSemiconductors (ITRS) static power dominates dynamic power with theadvancement in technology. One of the well-known techniques used forleakage reduction is Input Vector Control (IVC). Due to stacking effect inIVC, it gives less leakage for the Minimum Leakage Vector (MLV) appliedat inputs of test circuit. This paper introduces Particle Swarm Optimization(PSO) algorithm to the field of VLSI to find minimum leakage vector.Another optimization algorithm called Genetic algorithm (GA) is alsoimplemented to search MLV and compared with PSO in terms of number ofiterations. The proposed approach is validated by simulating few testcircuits. Both GA and PSO algorithms are implemented in Verilog HDLand the simulations are carried out using Xilinx 9.2i. From the simulationresults it is found that PSO based approach is best in finding MLVcompared to Genetic based implementation as PSO technique uses lessruntime compared to GA. To the best of the author’s knowledge PSOalgorithm is used in IVC technique to optimize power for the first time andit is quite successful in searching MLV

    Experimental and simulation study of 1D silicon nanowire transistors using heavily doped channels

    Get PDF
    The experimental results from 8 nm diameter silicon nanowire junctionless field effect transistors with gate lengths of 150 nm are presented that demonstrate on-currents up to 1.15 mA/m for 1.0 V and 2.52 mA/m for 1.8 V gate overdrive with an off-current set at 100 nA/m. On- to off-current ratios above 108 with a subthreshold slope of 66 mV/dec are demonstrated at 25 oC. Simulations using drift-diffusion which include densitygradient quantum corrections provide excellent agreement with the experimental results. The simulations demonstrate that the present silicon-dioxide gate dielectric only allows the gate to be scaled to 25 nm length before short-channel effects significantly reduce the performance. If high-K dielectrics replace some parts of the silicon dioxide then the technology can be scaled to at least 10 nm gatelength
    • …
    corecore