648 research outputs found

    TopologyNet: Topology based deep convolutional neural networks for biomolecular property predictions

    Full text link
    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the entangled geometric complexity and biological complexity. We introduce topology, i.e., element specific persistent homology (ESPH), to untangle geometric complexity and biological complexity. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains crucial biological information via a multichannel image representation. It is able to reveal hidden structure-function relationships in biomolecules. We further integrate ESPH and convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the limitations to deep learning arising from small and noisy training sets, we present a multitask topological convolutional neural network (MT-TCNN). We demonstrate that the present TopologyNet architectures outperform other state-of-the-art methods in the predictions of protein-ligand binding affinities, globular protein mutation impacts, and membrane protein mutation impacts.Comment: 20 pages, 8 figures, 5 table

    Efficient and Scalable 4-th order Match Propagation

    Get PDF
    International audienceWe propose a robust method to match image feature points taking into account geometric consistency. It is a careful adaptation of the match propagation principle to 4th-order geometric constraints (match quadruple consistency). With our method, a set of matches is explained by a network of locally-similar affinities. This approach is useful when simple descriptor-based matching strategies fail, in particular for highly ambiguous data, e.g., with repetitive patterns or where texture is lacking. As it scales easily to hundreds of thousands of matches, it is also useful when denser point distributions are sought, e.g., for high-precision rigid model estimation. Experiments show that our method is competitive (efficient, scalable, accurate, robust) against state-of-the-art methods in deformable object matching, camera calibration and pattern detection

    Algorithms for super-resolution of images based on Sparse Representation and Manifolds

    Get PDF
    lmage super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super­ resolution problems. lndeed, in arder to estimate an output image, we adopta mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already per- form well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in arder to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the- art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for recon- structing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)Super-resolução de imagens é definido como urna classe de técnicas que melhora a resolução espacial de imagens. Métodos de super-resolução podem ser subdivididos em métodos para urna única imagens e métodos para múltiplas imagens. Esta tese foca no desenvolvimento de algoritmos baseados em teorias matemáticas para problemas de super-resolução de urna única imagem. Com o propósito de estimar urna imagem de saída, nós adotamos urna abordagem mista, ou seja: nós usamos dicionários de patches com restrição de esparsidade (método baseado em aprendizagem) e termos de regularização (método baseado em reconstrução). Embora os métodos existentes sejam eficientes, eles nao levam em consideração a geometria dos dados para: regularizar a solução, clusterizar os dados (dados sao frequentemente clusterizados usando algoritmos com a distancia Euclideana como métrica de dissimilaridade), aprendizado de dicionários (eles sao frequentemente treinados usando PCA ou K-SVD). Portante, os métodos do estado da arte ainda tem algumas deficiencias. Neste trabalho, nós propomos tres métodos originais para superar estas deficiencias. Primeiro, nós desenvolvemos SE-ASDS (um termo de regularização baseado em structure tensor) afim de melhorar a nitidez das bordas das imagens. SE-ASDS alcança resultados muito melhores que os algoritmos do estado da arte. Em seguida, nós propomos os algoritmos AGNN e GOC para determinar um subconjunto de amostras de treinamento a partir das quais um bom modelo local pode ser calculado para reconstruir urna dada amostra de entrada considerando a geometria dos dados. Os métodos AGNN e GOC superamos métodos spectral clustering, soft clustering e os métodos baseados em distancia geodésica na maioria dos casos. Depois, nós propomos o método aSOB que leva em consideração a geometria dos dados e o tamanho do dicionário. O método aSOB supera os métodos PCA e PGA. Finalmente, nós combinamos todos os métodos que propomos em um único algoritmo, a saber, G2SR. Nosso algoritmo G2SR mostra resultados melhores que os métodos do estado da arte em termos de PSRN, SSIM, FSIM e qualidade visual

    PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for Generalized Novel Category Discovery

    Full text link
    Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose a contrastive affinity learning stage to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced prompt supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (with nearly 11%11\% gain on CUB-200, and 9%9\% on ImageNet-100) on overall accuracy
    corecore