205 research outputs found

    Riemannian thresholding methods for row-sparse and low-rank matrix recovery

    Get PDF
    In this paper, we present modifications of the iterative hard thresholding (IHT) method for recovery of jointly row-sparse and low-rank matrices. In particular, a Riemannian version of IHT is considered which significantly reduces computational cost of the gradient projection in the case of rank-one measurement operators, which have concrete applications in blind deconvolution. Experimental results are reported that show near-optimal recovery for Gaussian and rank-one measurements, and that adaptive stepsizes give crucial improvement. A Riemannian proximal gradient method is derived for the special case of unknown sparsity

    Riemannian thresholding methods for row-sparse and low-rank matrix recovery

    Get PDF
    In this paper, we present modifications of the iterative hard thresholding (IHT) method for recovery of jointly row-sparse and low-rank matrices. In particular a Riemannian version of IHT is considered which significantly reduces computational cost of the gradient projection in the case of rank-one measurement operators, which have concrete applications in blind deconvolution. Experimental results are reported that show near-optimal recovery for Gaussian and rank-one measurements, and that adaptive stepsizes give crucial improvement. A Riemannian proximal gradient method is derived for the special case of unknown sparsity

    Simultaneous Structures in Convex Signal Recovery—Revisiting the Convex Combination of Norms

    Get PDF
    In compressed sensing one uses known structures of otherwise unknown signals to recover them from as few linear observations as possible. The structure comes in form of some compressibility including different notions of sparsity and low rankness. In many cases convex relaxations allow to efficiently solve the inverse problems using standard convex solvers at almost-optimal sampling rates. A standard practice to account for multiple simultaneous structures in convex optimization is to add further regularizers or constraints. From the compressed sensing perspective there is then the hope to also improve the sampling rate. Unfortunately, when taking simple combinations of regularizers, this seems not to be automatically the case as it has been shown for several examples in recent works. Here, we give an overview over ideas of combining multiple structures in convex programs by taking weighted sums and weighted maximums. We discuss explicitly cases where optimal weights are used reflecting an optimal tuning of the reconstruction. In particular, we extend known lower bounds on the number of required measurements to the optimally weighted maximum by using geometric arguments. As examples, we discuss simultaneously low rank and sparse matrices and notions of matrix norms (in the “square deal” sense) for regularizing for tensor products. We state an SDP formulation for numerically estimating the statistical dimensions and find a tensor case where the lower bound is roughly met up to a factor of two.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität BerlinEC/H2020/665778/EU/SUPPORTING MOBILITY IN THE ERA THROUGH AN INTERNATIONAL FELLOWSHIP PROGRAMME FOR DEVELOPEMENT OF BASIC RESEARCH IN POLAND/POLONE

    Applied Harmonic Analysis and Sparse Approximation

    Get PDF
    Efficiently analyzing functions, in particular multivariate functions, is a key problem in applied mathematics. The area of applied harmonic analysis has a significant impact on this problem by providing methodologies both for theoretical questions and for a wide range of applications in technology and science, such as image processing. Approximation theory, in particular the branch of the theory of sparse approximations, is closely intertwined with this area with a lot of recent exciting developments in the intersection of both. Research topics typically also involve related areas such as convex optimization, probability theory, and Banach space geometry. The workshop was the continuation of a first event in 2012 and intended to bring together world leading experts in these areas, to report on recent developments, and to foster new developments and collaborations

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    Segmentation-Driven Tomographic Reconstruction.

    Get PDF

    Semi-device-dependent blind quantum tomography

    Get PDF
    Extracting tomographic information about quantum states is a crucial task in the quest towards devising high-precision quantum devices. Current schemes typically require measurement devices for tomography that are a priori calibrated to a high precision. Ironically, the accuracy of the measurement calibration is fundamentally limited by the accuracy of state preparation, establishing a vicious cycle. Here, we prove that this cycle can be broken and the fundamental dependence on the measurement devices significantly relaxed. We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind tomography scheme with a classically efficient post-processing algorithm. We further improve the efficiency of our scheme by making use of the sparse structure of the calibrations. This is achieved by relaxing the blind quantum tomography problem to the task of de-mixing a sparse sum of low-rank quantum states. Building on techniques from model-based compressed sensing, we prove that the proposed algorithm recovers a low-rank quantum state and the calibration provided that the measurement model exhibits a restricted isometry property. For generic measurements, we show that our algorithm requires a close-to-optimal number measurement settings for solving the blind tomography task. Complementing these conceptual and mathematical insights, we numerically demonstrate that blind quantum tomography is possible by exploiting low-rank assumptions in a practical setting inspired by an implementation of trapped ions using constrained alternating optimization.Comment: 22 pages, 8 Figure

    Dictionary optimization for representing sparse signals using Rank-One Atom Decomposition (ROAD)

    Get PDF
    Dictionary learning has attracted growing research interest during recent years. As it is a bilinear inverse problem, one typical way to address this problem is to iteratively alternate between two stages: sparse coding and dictionary update. The general principle of the alternating approach is to fix one variable and optimize the other one. Unfortunately, for the alternating method, an ill-conditioned dictionary in the training process may not only introduce numerical instability but also trap the overall training process towards a singular point. Moreover, it leads to difficulty in analyzing its convergence, and few dictionary learning algorithms have been proved to have global convergence. For the other bilinear inverse problems, such as short-and-sparse deconvolution (SaSD) and convolutional dictionary learning (CDL), the alternating method is still a popular choice. As these bilinear inverse problems are also ill-posed and complicated, they are tricky to handle. Additional inner iterative methods are usually required for both of the updating stages, which aggravates the difficulty of analyzing the convergence of the whole learning process. It is also challenging to determine the number of iterations for each stage, as over-tuning any stage will trap the whole process into a local minimum that is far from the ground truth. To mitigate the issues resulting from the alternating method, this thesis proposes a novel algorithm termed rank-one atom decomposition (ROAD), which intends to recast a bilinear inverse problem into an optimization problem with respect to a single variable, that is, a set of rank-one matrices. Therefore, the resulting algorithm is one stage, which minimizes the sparsity of the coefficients while keeping the data consistency constraint throughout the whole learning process. Inspired by recent advances in applying the alternating direction method of multipliers (ADMM) to nonconvex nonsmooth problems, an ADMM solver is adopted to address ROAD problems, and a lower bound of the penalty parameter is derived to guarantee a convergence in the augmented Lagrangian despite nonconvexity of the optimization formulation. Compared to two-stage dictionary learning methods, ROAD simplifies the learning process, eases the difficulty of analyzing convergence, and avoids the singular point issue. From a practical point of view, ROAD reduces the number of tuning parameters required in other benchmark algorithms. Numerical tests reveal that ROAD outperforms other benchmark algorithms in both synthetic data tests and single image super-resolution applications. In addition to dictionary learning, the ROAD formulation can also be extended to solve the SaSD and CDL problems. ROAD can still be employed to recast these problems into a one-variable optimization problem. Numerical tests illustrate that ROAD has better performance in estimating convolutional kernels compared to the latest SaSD and CDL algorithms.Open Acces
    • …
    corecore