733 research outputs found

    High performance wearable ultrasound as a human-machine interface for wrist and hand kinematic tracking

    Get PDF
    Objective: Non-invasive human machine interfaces (HMIs) have high potential in medical, entertainment, and industrial applications. Traditionally, surface electromyography (sEMG) has been used to track muscular activity and infer motor intention. Ultrasound (US) has received increasing attention as an alternative to sEMG-based HMIs. Here, we developed a portable US armband system with 24 channels and a multiple receiver approach, and compared it with existing sEMG- and US-based HMIs on movement intention decoding. Methods: US and motion capture data was recorded while participants performed wrist and hand movements of four degrees of freedom (DoFs) and their combinations. A linear regression model was used to offline predict hand kinematics from the US (or sEMG, for comparison) features. The method was further validated in real-time for a 3-DoF target reaching task. Results: In the offline analysis, the wearable US system achieved an average R2 of 0.94 in the prediction of four DoFs of the wrist and hand while sEMG reached a performance of R2=0.06 . In online control, the participants achieved an average 93% completion rate of the targets. Conclusion: When tailored for HMIs, the proposed US A-mode system and processing pipeline can successfully regress hand kinematics both in offline and online settings with performances comparable or superior to previously published interfaces. Significance: Wearable US technology may provide a new generation of HMIs that use muscular deformation to estimate limb movements. The wearable US system allowed for robust proportional and simultaneous control over multiple DoFs in both offline and online settings

    Augmented reality selection through smart glasses

    Get PDF
    O mercado de óculos inteligentes está em crescimento. Este crescimento abre a possibilidade de um dia os óculos inteligentes assumirem um papel mais ativo tal como os smartphones já têm na vida quotidiana das pessoas. Vários métodos de interação com esta tecnologia têm sido estudados, mas ainda não é claro qual o método que poderá ser o melhor para interagir com objetos virtuais. Neste trabalho são mencionados diversos estudos que se focam nos diferentes métodos de interação para aplicações de realidade aumentada. É dado destaque às técnicas de interação para óculos inteligentes tal como às suas vantagens e desvantagens. No contexto deste trabalho foi desenvolvido um protótipo de Realidade Aumentada para locais fechados, implementando três métodos de interação diferentes. Foram também estudadas as preferências do utilizador e sua vontade de executar o método de interação em público. Além disso, é extraído o tempo de reação que é o tempo entre a deteção de uma marca e o utilizador interagir com ela. Um protótipo de Realidade Aumentada ao ar livre foi desenvolvido a fim compreender os desafios diferentes entre uma aplicação de Realidade Aumentada para ambientes interiores e exteriores. Na discussão é possível entender que os utilizadores se sentem mais confortáveis usando um método de interação semelhante ao que eles já usam. No entanto, a solução com dois métodos de interação, função de toque nos óculos inteligentes e movimento da cabeça, permitem obter resultados próximos aos resultados do controlador. É importante destacar que os utilizadores não passaram por uma fase de aprendizagem os resultados apresentados nos testes referem-se sempre à primeira e única vez com o método de interação. O que leva a crer que o futuro de interação com óculos inteligentes possa ser uma fusão de diferentes técnicas de interação.The smart glasses’ market continues growing. It enables the possibility of someday smart glasses to have a presence as smartphones have already nowadays in people's daily life. Several interaction methods for smart glasses have been studied, but it is not clear which method could be the best to interact with virtual objects. In this research, it is covered studies that focus on the different interaction methods for reality augmented applications. It is highlighted the interaction methods for smart glasses and the advantages and disadvantages of each interaction method. In this work, an Augmented Reality prototype for indoor was developed, implementing three different interaction methods. It was studied the users’ preferences and their willingness to perform the interaction method in public. Besides that, it is extracted the reaction time which is the time between the detection of a marker and the user interact with it. An outdoor Augmented Reality application was developed to understand the different challenges between indoor and outdoor Augmented Reality applications. In the discussion, it is possible to understand that users feel more comfortable using an interaction method similar to what they already use. However, the solution with two interaction methods, smart glass’s tap function, and head movement allows getting results close to the results of the controller. It is important to highlight that was always the first time of the users, so there was no learning before testing. This leads to believe that the future of smart glasses interaction can be the merge of different interaction methods

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Using High Density EMG to Proportionally Control 3D Model of Human Hand

    Get PDF
    Control of human hand using surface electromyography (EMG) is already established in various mechanisms, but proportionally controlling magnitudes degrees of freedom (DOF) of humanoid hand model is still highly developed in recent years. This paper proposes another method to achieve a proportional estimation and control of human’s hand multiple DOFs. Gestures in the form of American Sign Language (ABCDFIKLOW) were chosen as the targets, of which ten alphabetical gestures were specifically used following their clarity on its 3D model. Then the dataset of the movements gestures was simultaneously recorded using High-density electromyography (HD-EMG) and motion capture system. Sensor placements were on intrinsic - extrinsic muscles for HD-EMG and finger joints for the motion capture system. To derive the proportional control in time series between both datasets (HD-EMG and kinematics data), neural network (NN) and k-Nearest Neighbour were used. The models produced around 70-95 % (R index) accuracy for the eleven DOFs in four healthy subjects’ hand. kNN’s performance was better than NN, even if the input features were reduced either using manual selections or principal component analysis (PCA). The time series controls could also identify most sign language gestures (9 of 10), with difficulty was given on O gesture. The false interpretation was because of nearly identical muscle’s EMG and kinematics data between O and C. This paper intends to extend its conference version [1] by adding more in-depth Results and Discussion along making other sections more comprehensive

    A gaze-contingent framework for perceptually-enabled applications in healthcare

    Get PDF
    Patient safety and quality of care remain the focus of the smart operating room of the future. Some of the most influential factors with a detrimental effect are related to suboptimal communication among the staff, poor flow of information, staff workload and fatigue, ergonomics and sterility in the operating room. While technological developments constantly transform the operating room layout and the interaction between surgical staff and machinery, a vast array of opportunities arise for the design of systems and approaches, that can enhance patient safety and improve workflow and efficiency. The aim of this research is to develop a real-time gaze-contingent framework towards a "smart" operating suite, that will enhance operator's ergonomics by allowing perceptually-enabled, touchless and natural interaction with the environment. The main feature of the proposed framework is the ability to acquire and utilise the plethora of information provided by the human visual system to allow touchless interaction with medical devices in the operating room. In this thesis, a gaze-guided robotic scrub nurse, a gaze-controlled robotised flexible endoscope and a gaze-guided assistive robotic system are proposed. Firstly, the gaze-guided robotic scrub nurse is presented; surgical teams performed a simulated surgical task with the assistance of a robot scrub nurse, which complements the human scrub nurse in delivery of surgical instruments, following gaze selection by the surgeon. Then, the gaze-controlled robotised flexible endoscope is introduced; experienced endoscopists and novice users performed a simulated examination of the upper gastrointestinal tract using predominately their natural gaze. Finally, a gaze-guided assistive robotic system is presented, which aims to facilitate activities of daily living. The results of this work provide valuable insights into the feasibility of integrating the developed gaze-contingent framework into clinical practice without significant workflow disruptions.Open Acces

    Monitoring a Realistic Virtual Hand using a Passive Haptic Device to Interact with Virtual Worlds

    Get PDF
    We present a prototype of a hands-on immersive peripheral device for controlling a virtual hand with high dexterity. This prototype is as easy as a mouse to use and allows the control of a high number of degrees of freedom (dofs) with tactile feedback. The goals corresponding to design issues, physiological behaviors, include the choice of sensors’ technology and their position on the device, low forces exerted while using the device, relevant multi-sensorial feedback, performance of achieved tasks

    Real-time 3D hand reconstruction in challenging scenes from a single color or depth camera

    Get PDF
    Hands are one of the main enabling factors for performing complex tasks and humans naturally use them for interactions with their environment. Reconstruction and digitization of 3D hand motion opens up many possibilities for important applications. Hands gestures can be directly used for human–computer interaction, which is especially relevant for controlling augmented or virtual reality (AR/VR) devices where immersion is of utmost importance. In addition, 3D hand motion capture is a precondition for automatic sign-language translation, activity recognition, or teaching robots. Different approaches for 3D hand motion capture have been actively researched in the past. While being accurate, gloves and markers are intrusive and uncomfortable to wear. Hence, markerless hand reconstruction based on cameras is desirable. Multi-camera setups provide rich input, however, they are hard to calibrate and lack the flexibility for mobile use cases. Thus, the majority of more recent methods uses a single color or depth camera which, however, makes the problem harder due to more ambiguities in the input. For interaction purposes, users need continuous control and immediate feedback. This means the algorithms have to run in real time and be robust in uncontrolled scenes. These requirements, achieving 3D hand reconstruction in real time from a single camera in general scenes, make the problem significantly more challenging. While recent research has shown promising results, current state-of-the-art methods still have strong limitations. Most approaches only track the motion of a single hand in isolation and do not take background-clutter or interactions with arbitrary objects or the other hand into account. The few methods that can handle more general and natural scenarios run far from real time or use complex multi-camera setups. Such requirements make existing methods unusable for many aforementioned applications. This thesis pushes the state of the art for real-time 3D hand tracking and reconstruction in general scenes from a single RGB or depth camera. The presented approaches explore novel combinations of generative hand models, which have been used successfully in the computer vision and graphics community for decades, and powerful cutting-edge machine learning techniques, which have recently emerged with the advent of deep learning. In particular, this thesis proposes a novel method for hand tracking in the presence of strong occlusions and clutter, the first method for full global 3D hand tracking from in-the-wild RGB video, and a method for simultaneous pose and dense shape reconstruction of two interacting hands that, for the first time, combines a set of desirable properties previously unseen in the literature.Hände sind einer der Hauptfaktoren für die Ausführung komplexer Aufgaben, und Menschen verwenden sie auf natürliche Weise für Interaktionen mit ihrer Umgebung. Die Rekonstruktion und Digitalisierung der 3D-Handbewegung eröffnet viele Möglichkeiten für wichtige Anwendungen. Handgesten können direkt als Eingabe für die Mensch-Computer-Interaktion verwendet werden. Dies ist insbesondere für Geräte der erweiterten oder virtuellen Realität (AR / VR) relevant, bei denen die Immersion von größter Bedeutung ist. Darüber hinaus ist die Rekonstruktion der 3D Handbewegung eine Voraussetzung zur automatischen Übersetzung von Gebärdensprache, zur Aktivitätserkennung oder zum Unterrichten von Robotern. In der Vergangenheit wurden verschiedene Ansätze zur 3D-Handbewegungsrekonstruktion aktiv erforscht. Handschuhe und physische Markierungen sind zwar präzise, aber aufdringlich und unangenehm zu tragen. Daher ist eine markierungslose Handrekonstruktion auf der Basis von Kameras wünschenswert. Multi-Kamera-Setups bieten umfangreiche Eingabedaten, sind jedoch schwer zu kalibrieren und haben keine Flexibilität für mobile Anwendungsfälle. Daher verwenden die meisten neueren Methoden eine einzelne Farb- oder Tiefenkamera, was die Aufgabe jedoch schwerer macht, da mehr Ambiguitäten in den Eingabedaten vorhanden sind. Für Interaktionszwecke benötigen Benutzer kontinuierliche Kontrolle und sofortiges Feedback. Dies bedeutet, dass die Algorithmen in Echtzeit ausgeführt werden müssen und robust in unkontrollierten Szenen sein müssen. Diese Anforderungen, 3D-Handrekonstruktion in Echtzeit mit einer einzigen Kamera in allgemeinen Szenen, machen das Problem erheblich schwieriger. Während neuere Forschungsarbeiten vielversprechende Ergebnisse gezeigt haben, weisen aktuelle Methoden immer noch Einschränkungen auf. Die meisten Ansätze verfolgen die Bewegung einer einzelnen Hand nur isoliert und berücksichtigen keine alltäglichen Umgebungen oder Interaktionen mit beliebigen Objekten oder der anderen Hand. Die wenigen Methoden, die allgemeinere und natürlichere Szenarien verarbeiten können, laufen nicht in Echtzeit oder verwenden komplexe Multi-Kamera-Setups. Solche Anforderungen machen bestehende Verfahren für viele der oben genannten Anwendungen unbrauchbar. Diese Dissertation erweitert den Stand der Technik für die Echtzeit-3D-Handverfolgung und -Rekonstruktion in allgemeinen Szenen mit einer einzelnen RGB- oder Tiefenkamera. Die vorgestellten Algorithmen erforschen neue Kombinationen aus generativen Handmodellen, die seit Jahrzehnten erfolgreich in den Bereichen Computer Vision und Grafik eingesetzt werden, und leistungsfähigen innovativen Techniken des maschinellen Lernens, die vor kurzem mit dem Aufkommen neuronaler Netzwerke entstanden sind. In dieser Arbeit werden insbesondere vorgeschlagen: eine neuartige Methode zur Handbewegungsrekonstruktion bei starken Verdeckungen und in unkontrollierten Szenen, die erste Methode zur Rekonstruktion der globalen 3D Handbewegung aus RGB-Videos in freier Wildbahn und die erste Methode zur gleichzeitigen Rekonstruktion von Handpose und -form zweier interagierender Hände, die eine Reihe wünschenwerter Eigenschaften komibiniert
    • …
    corecore