1,168 research outputs found

    Design and control of a single-leg exoskeleton with gravity compensation for children with unilateral cerebral palsy

    Get PDF
    Children with cerebral palsy (CP) experience reduced quality of life due to limited mobility and independence. Recent studies have shown that lower-limb exoskeletons (LLEs) have significant potential to improve the walking ability of children with CP. However, the number of prototyped LLEs for children with CP is very limited, while no single-leg exoskeleton (SLE) has been developed specifically for children with CP. This study aims to fill this gap by designing the first size-adjustable SLE for children with CP aged 8 to 12, covering Gross Motor Function Classification System (GMFCS) levels I to IV. The exoskeleton incorporates three active joints at the hip, knee, and ankle, actuated by brushless DC motors and harmonic drive gears. Individuals with CP have higher metabolic consumption than their typically developed (TD) peers, with gravity being a significant contributing factor. To address this, the study designed a model-based gravity-compensator impedance controller for the SLE. A dynamic model of user and exoskeleton interaction based on the Eulerā€“Lagrange formulation and following Denavitā€“Hartenberg rules was derived and validated in Simscapeā„¢ and SimulinkĀ® with remarkable precision. Additionally, a novel systematic simplification method was developed to facilitate dynamic modelling. The simulation results demonstrate that the controlled SLE can improve the walking functionality of children with CP, enabling them to follow predefined target trajectories with high accuracy

    A population-based microbial oscillator

    Get PDF
    Genetic oscillators are a major theme of interest in the emerging field of synthetic biology. Until recently, most work has been carried out using intra-cellular oscillators, but this approach restricts the broader applicability of such systems. Motivated by a desire to develop large-scale, spatially-distributed cell-based computational systems, we present an initial design for a population-level oscillator which uses three different bacterial strains. Our system is based on the client-server model familiar to computer science, and uses quorum sensing for communication between nodes. We present the results of extensive in silico simulation tests, which confirm that our design is both feasible and robust.Comment: Submitte

    Modeling and Parameter Estimation of Escherichia Coli Bioprocess

    Get PDF
    Most biopharmaceuticals today are focused on the production of one of three major cell types: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells (Chinese Hamster Ovary cells). Growth opti-mization is a major focus as this dictates the pace of advancements in drug manu-facturing. The process involved in producing these cells itself is very complex and modeling a system to accurately capture these characteristics can be diļ¬ƒcult. The overall process is expensive to run and repeated testing of various control algorithms to optimize growth can prove to be very time consuming as well. In order to develop control strategies and improve the yield of protein, it is beneļ¬cial to model a system that captures the responses of the bioprocess. The model can be coupled with diļ¬€erent controllers to test the yield output and determine the most eļ¬€ective control strategies without incurring additional costs or time delays. Model parameters are determined by the process of numerical minimization, making use of experimentally obtained data to ensure accurate simulation system behavior. Additionally, a separate system can be developed to switch between the simulation platform and the actual process, with the same control strategy being implemented to compare against results of the simulation and the actual process. This allows for further adjustments to be made to more eļ¬€ectively model the bioprocess. This thesis describes the implementation of the Xu model, found in literature as the simulation counterpart to an experimental hardware setup. A hardware-in-the-loop simulation is developed with the ability to accurately model system parameters against experimentally obtained results in order to carry out control strategy testing on the simulation side before switching to the experimental hardware side. Accurate parameter estimation is achieved by ļ¬tting simulation results to experimentally logged data to ensure the simulation replicates the behavior of the physical system, and is subsequently veriļ¬ed against non-training data

    MATLAB in Biomodeling

    Get PDF

    A Novel Artificial Pancreas: Energy Efficient Valveless Piezoelectric Actuated Closed-Loop Insulin Pump for T1DM

    Get PDF
    The objective of this work is to develop a closed-loop controlled insulin pump to keep the blood glucose level of Type 1 diabetes mellitus (T1DM) patients in the desired range. In contrast to the existing artificial pancreas systems with syringe pumps, an energy-efficient, valveless piezoelectric pump is designed and simulated with different types of controllers and glucose-insulin models. COMSOL Multiphysics is used for piezoelectric-fluid-structural coupled 3D finite element simulations of the pump. Then, a reduced-order model (ROM) is simulated in MATLAB/Simulink together with optimal and proportional-integral-derivative (PID) controllers and glucose-insulin models of Ackerman, Bergman, and Sorensen. Divergence angle, nozzle/diffuser diameters, lengths, chamber height, excitation voltage, and frequency are optimized with dimensional constraints to achieve a high net flow rate and low power consumption. A prototype is manufactured and experimented with different excitation frequencies. It is shown that the proposed system successfully controls the delivered insulin for all three glucose-insulin models

    The Importance of Heating System Transient Response in Domestic Energy Labelling

    Get PDF
    European National Calculation Methods (NCM), such as the UK Standard Assessment Procedure (SAP), are used to make standardised and simplified assessments of building energy performance. These NCMs contain simplifications to aid ease of use and comparability of resulting Energy Performance Certificates (EPC). By comparing SAP with a modern, dynamic modelling system, this study quantifies internal temperatures and thereby heating energy consumption. Results show that for the considered test house SAP results correspond closely to a dynamic model using an idealistic heating system, with perfect control and instant responsiveness. However, the introduction of a dynamic, physically realistic gas fired boiler and water based heating system to the model results in a consistent increase in internal temperature (0.5 Ā°C) and energy demand (by ca. 1000 kWh/a). Variation of further parameters within the dynamic model, controls and heat source size, are presented and compared to SAP results and assumptions. The inclusion of more realistic dynamics in building energy modelling for NCMs may provide a better basis for effective decision making with respect to a wide range of heating systems

    Thermal comfort based fuzzy logic control

    Get PDF
    Most heating, ventilation and air conditioning (HVAC) control systems are considered as temperature control problems. In this work, the predicted mean vote (PMV) is used to control the indoor temperature of a space by setting it at a point where the PMV index becomes zero and the predicted percentage of persons dissatisfied (PPD) achieves a maximum threshold of 5%. This is achieved through the use of a fuzzy logic controller that takes into account a range of human comfort criteria in the formulation of the control action that should be applied to the heating system to bring the space to comfort conditions. The resulting controller is free of the set up and tuning problems that hinder conventional HVAC controllers. Simulation results show that the proposed control strategy makes it possible to maximize the indoor thermal comfort and, correspondingly, a reduction in energy use of 20% was obtained for a typical 7-day winter period when compared with conventional control

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF
    • ā€¦
    corecore