48 research outputs found

    An Off-line Methodology to Determine Limits of Lubrication in Sheet Metal Forming

    Get PDF

    Characterisation of concentrating solar optics by Light Field Method

    Get PDF
    Abstract: This dissertation develops ideas and techniques for the measurement of the light field produced by the concentrating optics that are used in solar thermal power systems. The research focussed on developing a framework and the principles for the implementation of a scalable technology that is suitable, in principle, for cost effective industrial implementation in the field. Investigation from first principles and technological surveys resulted in formulation of a number of model techniques, from which one was developed. A key component of the proposed model was evaluated using a novel reformulation and application of electrical impedance tomography (EIT). This was to implement an information transform effecting a highly non-linear compressive sensing mechanism, offsetting manufacturing and material complexity in the measurement of high solar flux levels. The technique allows sensing of a wide range of phenomena over arbitrary manifolds in three-dimensional space by utilizing passive transducers. An inverse reconstruction method particular to the structure of the device was proposed, implemented, and tested in a full simulation of intended operation. The parameter space of internal configurations of the method were the subject of a uniform, statistical search, with results also indicating geometrical properties of the transform used. A variety of design guides were developed to better optimize the implementation of the techniques in a range of applications.M.Ing. (Mechanical Engineering Science

    Cold Micro Metal Forming

    Get PDF
    This open access book contains the research report of the Collaborative Research Center “Micro Cold Forming” (SFB 747) of the University of Bremen, Germany. The topical research focus lies on new methods and processes for a mastered mass production of micro parts which are smaller than 1mm (by forming in batch size higher than one million). The target audience primarily comprises research experts and practitioners in production engineering, but the book may also be of interest to graduate students alike

    Ancient and historical systems

    Get PDF

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY88. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number

    Institute for Advanced Materials report 1993 EUR 15810 EN

    Get PDF

    Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields

    Get PDF
    Innovations in Road, Railway and Airfield Bearing Capacity – Volume 2 comprises the second part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field

    Institute for Advanced Materials report 1993 EUR 15810 EN

    Get PDF

    Development of sensors and non-destructive techniques to determine the performance of coatings in construction

    Get PDF
    The primary objective of this work was to examine and develop techniques for monitoring the degradation of Organically Coated Steel (OCS) in-situ. This included the detection of changes associated with the weathering to both the organic coating and metallic substrate. Initially, a review of current promising techniques was carried out however many were found to be unsuitable for this application and the adaptation of current techniques and the development of new techniques was considered. A brief concept investigation, based on initial testing and considerations, was used to determine a number of sensing techniques to examine. These included embedded, Resonant Frequency Identification (RFID), Magnetic Flux Leakage (MFL) and dielectric sensing. Each of these techniques were assessed for the application, prototyped, and tested against a range of samples to determine the accuracy and sensitivity of degradation detection provided. A range of poorly and highly durable coated samples were used in conjunction with accelerated weathering testing for this aim. Track based electronic printed sensors were presented as both a cut edge corrosion tracking and coating capacitance measurement method. While suffering somewhat from electrical paint compatibility issues both concepts showed merit in initial trials however the capacitive sensor ultimately proved insufficiently responsive to coating changes. The embedded, progressive failure-based, cut edge corrosion sensor was produced and tested in modern coating systems with moderate success. Novel applications of RFID and MLF techniques were considered and proved capable of detecting large changes in substrate condition due to significant corrosion. However, there was a lack of sufficient sensitivity when considering early-stage corrosion of durable modern OCS products. Finally, it was shown that a chipless antenna could be designed and optimised for novelly monitoring the changes to the dielectric properties of a paint layer due to degradation. However, ultimately this test, due to equipment requirements, lent itself more to lab testing than in-situ. Due to some of these limitations a different approach was considered in which the environmental factors influencing degradation were examined with the aim of relating these to performance across a building. It was observed that a combination of high humidity and the build-up of aggressive natural deposits contributed to high degradation rates in sheltered regions, such as building eaves, where microclimates were created. The build-up of deposits and their effect was presented as a key degradation accelerant during in-use service. A unique numerical simulation approach was developed to predict the natural washing, via rain impact and characteristics of the building analysed. This approach showed promise for determining areas unlikely to be naturally washed, and therefore subjected to a degradation accelerating, build-up of deposits. Given these understandings coated wetness sensors were considered as a realistic live-monitoring device capable of determining deposit build up and ultimately OCS lifetime
    corecore