3,858 research outputs found

    Fully Coupled Simulation of the Plasma Liquid Interface and Interfacial Coefficient Effects

    Full text link
    There is a growing interest in the study of coupled plasma-liquid systems because of their applications to biomedicine, biological and chemical disinfection, agriculture, and other areas. Without an understanding of the near-surface gas dynamics, modellers are left to make assumptions about the interfacial conditions. For instance it is commonly assumed that the surface loss or sticking coefficient of gas-phase electrons at the interface is equal to 1. In this work we explore the consequences of this assumption and introduce a couple of ways to think about the electron interfacial condition. In one set of simulations we impose a kinetic condition with varying surface loss coefficient on the gas phase interfacial electrons. In a second set of simulations we introduce a Henry's law like condition at the interface in which the gas-phase electron concentration is assumed to be in thermodynamic equilibrium with the liquid-phase electron concentration. It is shown that for a range of electron Henry coefficients spanning a range of known hydrophilic specie Henry coefficients, the gas phase electron density in the anode can vary by orders of magnitude. Varying reflection of electrons by the interface also has consequences for the electron energy profile. This variation in anode electron density and energy as a function of the interface characteristics could also lead to significant variation in near-surface gas chemistries when such reactions are included in the model; this could very well in turn affect the reactive species impinging on the liquid surface. We draw the conclusion that in order to make more confident model predictions about plasma-liquid systems, finer scale simulations and/or new experimental techniques must be used to elucidate the near-surface gas phase electron dynamics

    Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    Full text link
    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ\mum of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling and water evaporation. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2_2O2_2, NO2_2^-, and NO3_3^- are observed if the effect of evaporative cooling is not included

    Applications of plasma-liquid systems : a review

    Get PDF
    Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now

    From submicrosecond-to nanosecond-pulsed atmospheric-pressure plasmas

    Get PDF
    We have developed a time-hybrid computational model to study pulsed atmospheric-pressure discharges and compared simulation results with experimental data. Experimental and computational results indicate that increasing the applied voltage results in faster ignition of the discharge and an increase in the mean electron energy, opening the door to tunable plasma chemistry by means of pulse shaping. Above a critical electric field of ~2 kV/mmfor ~1-mm discharges, pulsed plasmas ignite right after the application of an externally applied voltage pulse. Despite the large pd value (30–300 torr · cm) and the high applied electric field, the discharges are found to be streamer free in a desirable glowlike mode. The comparison of the time evolution of the mean electron kinetic energy as a function of the pulse rise time suggests that a fast rise time is not necessarily the best way of achieving high mean electron energy

    High-voltage nanosecond pulses in a low-pressure radiofrequency discharge

    Full text link
    An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively-coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds \mu s (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase

    Controlled production of atomic oxygen and nitrogen in a pulsed radio-frequency atmospheric-pressure plasma

    Get PDF
    International audienceRadio-frequency driven atmospheric pressure plasmas are efficient sources for the production of reactive species at ambient pressure and close to room temperature. Pulsing the radio-frequency power input provides additional control over species production and gas temperature. Here, we demonstrate the controlled production of highly reactive atomic oxygen and nitrogen in a pulsed radio-frequency ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn001.gif] 13.56 MHz) atmospheric-pressure plasma, operated with a small ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn002.gif] 0.1 % air-like admixture ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn003.gif] \rm N_2 / ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn004.gif] \rm O_2 at ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn005.gif] 4:1 ) through variations in the duty cycle. Absolute densities of atomic oxygen and nitrogen are determined through vacuum-ultraviolet absorption spectroscopy using the DESIRS beamline at the SOLEIL synchrotron coupled with a high resolution Fourier-transform spectrometer. The neutral-gas temperature is measured using nitrogen molecular optical emission spectroscopy. For a fixed applied-voltage amplitude (234?V), varying the pulse duty cycle from 10% to 100% at a fixed 10?kHz pulse frequency enables us to regulate the densities of atomic oxygen and nitrogen over the ranges of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn006.gif] (0.18±0.03) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn007.gif] (3.7±0.1)× 10^20 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn008.gif] \rm m^-3 and ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn009.gif] (0.2±0.06) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn010.gif] (4.4±0.8) × 10^19 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn011.gif] \rm m^-3 , respectively. The corresponding 11?K increase in the neutral-gas temperature with increased duty cycle, up to a maximum of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn012.gif] (314±4) K, is relatively small. This additional degree of control, achieved through regulation of the pulse duty cycle and time-averaged power, could be of particular interest for prospective biomedical applications

    Integrated design of atmospheric pressure non-equilibrium plasma sources for industrial and biomedical applications

    Get PDF
    In this dissertation are reported the most relevant results obtained during my three years Ph.D. project. An open-air plasma source has been developed to treat plastic and metallic films typically used in food packaging manufacturing. Among others, the DBD configuration was chosen due to its many advantages such as high intensity and uniformity of the treatment, possibility of operating in ambient air as well as ease of scale up. Biological experiments were performed to assess the microbial reduction induced by the plasma treatment. Different operative conditions have been tested in order to identify the most efficient configuration and two distinct behaviours have been observed: low-power density treatment allowed to achieve microbial inactivation values below log 2 independently on treatment time; high-power density treatment where the microbial reduction grew with increasing treatment time. Subsequently, the plasma discharge has been characterized by means of three investigation methods: thermal, electrical and optical absorption spectroscopy (OAS) analysis. The thermal and electrical analyses were employed to identify the best dielectric materials for food packaging manufacturing purposes. Once defined the optimal DBD configuration, OAS was used to measure the absolute concentration of ozone and nitrogen dioxide. Results showed that at low-power density the chemistry is governed by ozone; while at high-power density ozone is consumed by the poisoning effect and only nitrogen dioxide is detectable. Lastly, a numerical simulation has been used to deeper investigate the chemistry governing the plasma discharge; by means of PLASIMO a global model and a fluid model were implemented

    Plasma medicine: an introductory review

    Get PDF
    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene— helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active ‘substances’ at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and nonequilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible
    corecore