661 research outputs found

    Using the fractional interaction law to model the impact dynamics in arbitrary form of multiparticle collisions

    Full text link
    Using the molecular dynamics method, we examine a discrete deterministic model for the motion of spherical particles in three-dimensional space. The model takes into account multiparticle collisions in arbitrary forms. Using fractional calculus we proposed an expression for the repulsive force, which is the so called fractional interaction law. We then illustrate and discuss how to control (correlate) the energy dissipation and the collisional time for an individual article within multiparticle collisions. In the multiparticle collisions we included the friction mechanism needed for the transition from coupled torsion-sliding friction through rolling friction to static friction. Analysing simple simulations we found that in the strong repulsive state binary collisions dominate. However, within multiparticle collisions weak repulsion is observed to be much stronger. The presented numerical results can be used to realistically model the impact dynamics of an individual particle in a group of colliding particles.Comment: 17 pages, 8 figures, 1 table; In review process of Physical Review

    Flow of wet granular materials: a numerical study

    Full text link
    We simulate dense assemblies of frictional spherical grains in steady shear flow under controlled normal stress PP in the presence of a small amount of an interstitial liquid, which gives rise to capillary menisci, assumed isolated (pendular regime), and to attractive forces. The system behavior depends on two dimensionless control parameters: inertial number II and reduced pressure P∗=aP/(πΓ)P^*=aP/(\pi\Gamma), comparing confining forces ∌a2P\sim a^2P to meniscus tensile strength F0=πΓaF_0=\pi\Gamma a, for grains of diameter aa joined by menisci with surface tension Γ\Gamma. We pay special attention to the quasi-static limit of slow flow and observe systematic, enduring strain localization in some of the cohesion-dominated (P∗∌0.1P^*\sim 0.1) systems. Homogeneous steady flows are characterized by the dependence of internal friction coefficient Ό∗\mu^* and solid fraction Ί\Phi on II and P∗P^*. We record fairly small but not negligible normal stress differences and the moderate sensitivity of the system to saturation within the pendular regime. Capillary forces have a significant effect on the macroscopic behavior of the system, up to P∗P^* values of several units. The concept of effective pressure may be used to predict an order of magnitude for the strong increase of Ό∗\mu^* as P∗P^* decreases but such a crude approach is unable to account for the complex structural changes induced by capillary cohesion. Likewise, the Mohr-Coulomb criterion for pressure-dependent critical states is, at best, an approximation valid within a restricted range of pressures, with P∗≄1P^*\ge 1. At small enough P∗P^*, large clusters of interacting grains form in slow flows, in which liquid bonds survive shear strains of several units. This affects the anisotropies associated to different interactions, and the shape of function Ό∗(I)\mu^*(I), which departs more slowly from its quasistatic limit than in cohesionless systems.Comment: 20 pages, 29 figures with 39 subfigure

    Predictive Modelling of Tribological Systems using Movable Cellular Automata

    Get PDF
    In the science of tribology, where there is an enormous degree of uncertainty, mathematical models that convey state-of-the-art scientific knowledge are invaluable tools for unveiling the underlying phenomena. A well-structured modelling framework that guarantees a connection between mathematical representations and experimental observations, can help in the systematic identification of the most realistic hypotheses among a pool of possibilities. This thesis is concerned with identifying the most appropriate computational model for the prediction of friction and wear in tribological applications, and the development of a predictive model and simulation tool based on the identified method. Accordingly, a thorough review of the literature has been conducted to find the most appropriate approach for predicting friction and wear using computer simulations, with the multi-scale approach in mind. It was concluded that the Movable Cellular Automata (MCA) method is the most suitable method for multi-scale modelling of tribological systems. It has been established from the state-of-the-art review in Chapter 2 of this thesis, that it is essential to be able to model continuous as well as discontinuous behaviour of materials on a range of scales from atomistic to micro scales to be able to simulate the first-bodies and third body simultaneously (also known as a multi-body) in a tribological system. This can only be done using a multi-scale particle-based method because continuum methods such as FEM are none-predictive and are not capable of describing the discontinuous nature of materials on the micro scale. The most important and well-known particle-based methods are molecular dynamics (MD) and the discrete element methods (DEM). Although MD has been widely used to simulate elastic and plastic deformation of materials, it is limited to the atomistic and nanoscales and cannot be used to simulate materials on the macro-scale. On the other hand, DEM is capable of simulating materials on the meso/micro scales and has been expanded since the algorithm was first proposed by Cundall and Strack, in 1979 and adopted by a number of scientific and engineering disciplines. However, it is limited to the simulation of granular materials and elastic brittle solid materials due to its contact configurations and laws. Even with the use of bond models to simulate cohesive and plastic materials, it shows major limitations with parametric estimations and validation against experimental results because its contact laws use parameters that cannot be directly obtained from the material properties or from experiments. The MCA method solves these problems using a hybrid technique, combining advantages of the classical cellular automata method and molecular dynamics and forming a model for simulating elasticity, plasticity and fracture in ductile consolidated materials. It covers both the meso and micro scales, and can even “theoretically” be used on the nano scale if the simulation tool is computationally powerful enough. A distinguishing feature of the MCA method is the description of interaction of forces between automata in terms of stress tensor components. This way a direct relationship between the MCA model parameters of particle interactions and tensor parameters of material constitutive law is established. This makes it possible to directly simulate materials and to implement different models and criteria of elasticity, plasticity and fracture, and describe elastic-plastic deformation using the theory of plastic flow. Hence, in MCA there is no need for parametric fitting because all model parameters can be directly obtained from the material mechanical properties. To model surfaces in contact and friction behaviour using MCA, the particle size can be chosen large enough to consider the contacting surface as a rough plane, which is the approach used in all MCA studies of contacting surfaces so far. The other approach is to specify a very small particle size so that it can directly simulate a real surface, which allows for the direct investigation of material behaviour and processes on all three scale levels (atomic, meso and macro) in an explicit form. This has still been proven difficult to do because it is too computationally extensive and only a small area of the contact can be simulated due to the high numbers of particles required to simulate a real solid. Furthermore, until now, no commercial software is available for MCA simulations, only a 2D MCA demo-version which was developed by the Laboratory of CAD of Materials at the Institute of Strength Physics and Materials Science in Tomsk, Russia, in 2005. The developers of the MCA method use their own in-house codes. This thesis presents the successful development of a 3D MCA open-source software for the scientific and tribology communities to use. This was done by implementing the MCA method within the framework of the open-source code LIGGGHTS. It follows the formulations of the 3D elastic-plastic model developed by the authors including Sergey G. Psakhie, Valentin L. Popov, Evgeny V. Shilko, and the external supervisor on this thesis Alexey Yu. Smolin, which has been successfully implemented in the open-source code LIGGGHTS. Details of the mathematical formulations can be found in [1]–[3], and section 3.5 of this thesis. The MCA model has been successfully implemented to simulate ductile consolidated materials. Specifically, new interaction laws were implemented, as well as features related to particle packing, particle interaction forces, bonding of particles, and others. The model has also been successfully verified, validated, and used in simulating indentation. The validation against experimental results showed that using the developed model, correct material mechanical response can be simulated using direct macroscopic mechanical material properties. The implemented code still shows limitations in terms of computational capacity because the parallelization of the code has not been completely implemented yet. Nevertheless, this thesis extends the capabilities of LIGGGHTS software to provide an open-source tool for using the MCA method to simulate solid material deformation behaviour. It also significantly increases the potential of using MCA in an HPC environment, producing results otherwise difficult to obtain

    Understanding bulk behavior of particulate materials from particle scale simulations

    Get PDF
    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not least, numerical simulations, along with theoretical analysis, are performed to investigate the interparticle force of dry coated particles. A model is derived and can be used to predict the probabilities of hose-host (HH), host-guest (HG), and guest-guest (GG) contacts. The results indicate that there are three different regions dominated by HH, HG, and GG contacts, respectively. Moreover, the critical SAC for the transition of HG to GG contacts is lower than previously estimated value. In summary, particle packing, particle dynamics associated with various particle processing devices, and interparticle force of dry coated particles are investigated in this thesis. The results show that particle scale information such as coordination number, collision dynamics, and contact force between particles from simulation results can help better understand bulk properties of assembly of individual particles

    Yielding, Rigidity, and Tensile Stress in Sheared Columns of Hexapod Granules

    Full text link
    Granular packings of non-convex or elongated particles can form free-standing structures like walls or arches. For some particle shapes, such as staples, the rigidity arises from interlocking of pairs of particles, but the origins of rigidity for non-interlocking particles remains unclear. We report on experiments and numerical simulations of sheared columns of "hexapods," particles consisting of three mutually orthogonal sphero-cylinders whose centers coincide. We vary the length-to-diameter aspect ratio, α\alpha, of the sphero-cylinders and subject the packings to quasistatic direct shear. For small α\alpha, we observe a finite yield stress. For large α\alpha, however, the column becomes rigid when sheared, supporting stresses that increase sharply with increasing strain. Analysis of X-ray micro-computed tomography (Micro-CT) data collected during the shear reveals that the stiffening is associated with a tilted, oblate cluster of hexapods near the nominal shear plane in which particle deformation and average contact number both increase. Simulation results show that the particles are collectively under tension along one direction even though they do not interlock pairwise. These tensions comes from contact forces carrying large torques, and they are perpendicular to the compressive stresses in the packing. They counteract the tendency to dilate, thus stabilize the particle cluster.Comment: 12 pages, 23 figure
    • 

    corecore