4,301 research outputs found

    Theory and simulation of subwavelength high contrast gratings and their applications in vertical-cavity surface-emitting laser devices

    Get PDF
    This work intends to fully explore the qualities and applications of subwavelength gratings. Subwavelength gratings are diffraction gratings with physical dimensions less than the wavelength of incident light. It has been found that by tailoring specific dimension parameters, a number of different reflection profiles can be attained by these structures including high reflectivity or low reflectivity with broad and narrow spectral responses. In the course of this thesis the physical basis for this phenomenon will be presented as well as a mathematical derivation. After discussion of the mechanics of the reflection behavior, the methods used in modeling subwavelength gratings and designing them for specific functions will be explored. Following this, the fundamentals of vertical-cavity surface-emitting lasers (VCSELs) will be discussed, and the applications of subwavelength gratings when used with these lasers will follow. Several devices, both theoretical proposals and fabricated examples, will be presented in addition to the available performance measurements. Finally, the fabrication challenges that restrict subwavelength gratings from adoption as standard components in VCSEL design will be considered with regard to ongoing fabrication research

    Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators

    Full text link
    We experimentally demonstrate tunable, highly-stable frequency combs with high repetition-rates using a single, charge injection based silicon PN modulator. In this work, we demonstrate combs in the C-band with over 8 lines in a 20-dB bandwidth. We demonstrate continuous tuning of the center frequency in the C-band and tuning of the repetition-rate from 7.5GHz to 12.5GHz. We also demonstrate through simulations the potential for bandwidth scaling using an optimized silicon PIN modulator. We find that, the time varying free carrier absorption due to carrier injection, an undesirable effect in data modulators, assists here in enhancing flatness in the generated combs.Comment: 10 pages, 7 figure

    Proof-of-principle of surface detection with air-guided quantum cascade lasers

    Get PDF
    We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results
    corecore