20,109 research outputs found

    A stochastic approximation algorithm for stochastic semidefinite programming

    Full text link
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Event-based State Estimation: An Emulation-based Approach

    Full text link
    An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.Comment: 21 pages, 8 figures, this article is based on the technical report arXiv:1511.05223 and is accepted for publication in IET Control Theory & Application

    Transmit without regrets: Online optimization in MIMO-OFDM cognitive radio systems

    Get PDF
    In this paper, we examine cognitive radio systems that evolve dynamically over time due to changing user and environmental conditions. To combine the advantages of orthogonal frequency division multiplexing (OFDM) and multiple-input, multiple-output (MIMO) technologies, we consider a MIMO-OFDM cognitive radio network where wireless users with multiple antennas communicate over several non-interfering frequency bands. As the network's primary users (PUs) come and go in the system, the communication environment changes constantly (and, in many cases, randomly). Accordingly, the network's unlicensed, secondary users (SUs) must adapt their transmit profiles "on the fly" in order to maximize their data rate in a rapidly evolving environment over which they have no control. In this dynamic setting, static solution concepts (such as Nash equilibrium) are no longer relevant, so we focus on dynamic transmit policies that lead to no regret: specifically, we consider policies that perform at least as well as (and typically outperform) even the best fixed transmit profile in hindsight. Drawing on the method of matrix exponential learning and online mirror descent techniques, we derive a no-regret transmit policy for the system's SUs which relies only on local channel state information (CSI). Using this method, the system's SUs are able to track their individually evolving optimum transmit profiles remarkably well, even under rapidly (and randomly) changing conditions. Importantly, the proposed augmented exponential learning (AXL) policy leads to no regret even if the SUs' channel measurements are subject to arbitrarily large observation errors (the imperfect CSI case), thus ensuring the method's robustness in the presence of uncertainties.Comment: 25 pages, 3 figures, to appear in the IEEE Journal on Selected Areas in Communication
    • …
    corecore