943 research outputs found

    Kirigami artificial muscles with complex biologically inspired morphologies

    Get PDF
    In this paper we present bio-inspired smart structures which exploit the actuation of flexible ionic polymer composites and the kirigami design principle. Kirigami design is used to convert planar actuators into active 3D structures capable of large out-of-plane displacement and that replicate biological mechanisms. Here we present the burstbot, a fluid control and propulsion mechanism based on the atrioventricular cuspid valve, and the vortibot, a spiral actuator based on Vorticella campanula, a ciliate protozoa. Models derived from biological counterparts are used as a platform for design optimisation and actuator performance measurement. The symmetric and asymmetric fluid interactions of the burstbot are investigated and the effectiveness in fluid transport applications is demonstrated. The vortibot actuator is geometrically optimised as a camera positioner capable of 360 degree scanning. Experimental results for a one-turn spiral actuator show complex actuation derived from a single degree of freedom control signal

    Ancient and historical systems

    Get PDF

    Development of a Fabrication Technique for Soft Planar Inflatable Composites

    Get PDF
    Soft robotics is a rapidly growing field in robotics that combines aspects of biologically inspired characteristics to unorthodox methods capable of conforming and/or adapting to unknown tasks or environments that would otherwise be improbable or complex with conventional robotic technologies. The field of soft robotics has grown rapidly over the past decade with increasing popularity and relevance to real-world applications. However, the means of fabricating these soft, compliant and intricate robots still poses a fundamental challenge, due to the liberal use of soft materials that are difficult to manipulate in their original state such as elastomers and fabric. These material properties rely on informal design approaches and bespoke fabrication methods to build soft systems. As such, there are a limited variety of fabrication techniques used to develop soft robots which hinders the scalability of robots and the time to manufacture, thus limiting their development. This research focuses towards developing a novel fabrication method for constructing soft planar inflatable composites. The fundamental method is based on a sub-set of additive manufacturing known as composite layering. The approach is designed from a planar manner and takes layers of elastomeric materials, embedded strain-limiting and mask layers. These components are then built up through a layer-by-layer fabrication method with the use of a bespoke film applicator set-up. This enables the fabrication of millimetre-scale soft inflatable composites with complex integrated masks and/or strain-limiting layers. These inflatable composites can then be cut into a desired shape via laser cutting or ablation. A design approach was also developed to expand the functionality of these inflatable composites through modelling and simulation via finite element analysis. Proof of concept prototypes were designed and fabricated to enable pneumatic driven actuation in the form of bending soft actuators, adjustable stiffness sensor, and planar shape change. This technique highlights the feasibility of the fabrication method and the value of its use in creating multi-material composite soft actuators which are thin, compact, flexible, and stretchable and can be applicable towards real-world application

    Finite element modeling of dielectric elastomer actuators for space applications

    Get PDF
    A special actuator device with passive sensing capability based on dielectric elastomer was studied and specialized to be used in space applications. The work illustrates the research project modeling procedure adopted to simulate the mechanical behavior of this material based on a finite element theory approach. The Mooney-Rivlin’s hyperelastic and Maxwell’s electrostatic models provide the theoretical basis to describe its electro-mechanic behavior. The validation of the procedure is performed through a numerical-experimental correlation between the response of a prototype of actuator developed by the Risø Danish research center and the 3D finite element model simulations. An investigation concerning a possible application in the space environment of dielectric elastomer actuators (DEA) is also presented

    A microgripper for single cell manipulation

    Get PDF
    This thesis presents the development of an electrothermally actuated microgripper for the manipulation of cells and other biological particles. The microgripper has been fabricated using a combination of surface and bulk micromachining techniques in a three mask process. All of the fabrication details have been chosen to enable a tri-layer, polymer (SU8) - metal (Au) - polymer (SU8), membrane to be released from the substrate stress free and without the need for sacrificial layers. An actuator design, which completely eliminates the parasitic resistance of the cold arm, is presented. When compared to standard U-shaped actuators, it improves the thermal efficiency threefold. This enables larger displacements at lower voltages and temperatures. The microgripper is demonstrated in three different configurations: normally open mode, normally closed mode, and normally open/closed mode. It has-been modelled using two coupled analytical models - electrothermal and thermomechanical - which have been custom developed for this application. Unlike previously reported models, the electrothermal model presented here includes the heat exchange between hot and cold arms of the actuators that are separated by a small air gap. A detailed electrothermomechanical characterisation of selected devices has permitted the validation of the models (also performed using finite element analysis) and the assessment of device performance. The device testing includes electrical, deflection, and temperature measurements using infrared (IR) thermography, its use in polymeric actuators reported here for the first time. Successful manipulation experiments have been conducted in both air and liquid environments. Manipulation of live cells (mice oocytes) in a standard biomanipulation station has validated the microgripper as a complementary and unique tool for the single cell experiments that are to be conducted by future generations of biologists in the areas of human reproduction and stem cell research

    Materials Research Department annual report 1998

    Get PDF

    Materials Research Department annual report 1999

    Get PDF

    A Novel Propeller Design for Micro-Swimming robot

    Get PDF
    The applications of a micro-swimming robot such as minimally invasive surgery, liquid pipeline robot etc. are widespread in recent years. The potential application fields are so inspiring, and it is becoming more and more achievable with the development of microbiology and Micro-Electro-Mechanical Systems (MEMS). The aim of this study is to improve the performance of micro-swimming robot through redesign the structure. To achieve the aim, this study reviewed all of the modelling methods of low Reynolds number flow including Resistive-force Theory (RFT), Slender Body Theory (SBT), and Immersed Boundary Method (IBM) etc. The swimming model with these methods has been analysed. Various aspects e.g. hydrodynamic interaction, design, development, optimisation and numerical methods from the previous researches have been studied. Based on the previous design of helix propeller for micro-swimmer, this study has proposed a novel propeller design for a micro-swimming robot which can improve the velocity with simplified propulsion structure. This design has adapted the coaxial symmetric double helix to improve the performance of propulsion and to increase stability. The central lines of two helical tails overlap completely to form a double helix structure, and its tail radial force is balanced with the same direction and can produce a stable axial motion. The verification of this design is conducted using two case studies. The first one is a pipe inspection robot which is in mm scale and swims in high viscosity flow that satisfies the low Reynolds number flow condition. Both simulation and experiment analysis are conducted for this case study. A cross-development method is adopted for the simulation analysis and prototype development. The experiment conditions are set up based on the simulation conditions. The conclusion from the analysis of simulation results gives suggestions to improve design and fabrication for the prototype. Some five revisions of simulation and four revisions of the prototype have been completed. The second case study is the human blood vessel robot. For the limitations of fabrication technology, only simulation is conducted, and the result is compared with previous researches. The results show that the proposed propeller design can improve velocity performance significantly. The main outcomes of this study are the design of a micro-swimming robot with higher velocity performance and the validation from both simulation and experiment
    • …
    corecore