2,622 research outputs found

    Path planning for reconfigurable rovers in planetary exploration

    Get PDF
    This paper introduces a path planning algorithm that takes into consideration different locomotion modes in a wheeled reconfigurable rover. Such algorithm, based on Fast Marching, calculates the optimal path in terms of power consumption between two positions, providing the most appropriate locomotion mode to be used at each position. Finally, the path planning algorithm is validated on a virtual Martian scene created within the V-REP simulation platform, where a virtual model of a planetary rover prototype is controlled by the same software that is used on the real one. Results of this contribution also demonstrate how the use of two locomotion modes, wheel-walking and normal-driving, can reduce the power consumption for a particular area.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Coupled path and motion planning for a rover-manipulator system

    Get PDF
    This paper introduces a motion planning strategy aimed at the coordination of a rover and manipulator. The main purpose is to fetch samples of scientific interest that could be placed on difficult locations, requiring to maximize the workspace of the combined system. In order to validate this strategy, a simulation environment has been built, based on the VORTEX Studio platform. A virtual model of the ExoTer rover prototype, owned by the European Space Agency, has been used together with the same robot control software. Finally, we show in this paper the benefits of validating the proposed strategy on simulation, prior to its future use on the real experimental rover.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    Path Planning for Reconfigurable Rovers in Planetary Exploration

    Get PDF
    This paper introduces a path planning algorithm that takes into consideration different locomotion modes in a wheeled reconfigurable rover. Power consumption and traction are estimated by means of simplified dynamics models for each locomotion mode. In particular, wheel-walking and normaldriving are modeled for a planetary rover prototype. These models are then used to define the cost function of a path planning algorithm based on fast marching. It calculates the optimal path, in terms of power consumption, between two positions, providing the most appropriate locomotion mode to be used at each position. Finally, the path planning algorithm was implemented in V-REP simulation software and a Martian area was used to validate it. Results of this contribution also demonstrate how the use of these locomotion modes would reduce the power consumption for a particular area.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented
    • 

    corecore