13,209 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    The Self-Organisation of Strategic Alliances

    Get PDF
    Strategic alliances form a vital part of today's business environment. The sheer variety of collaborative forms is notable - which include R&D coalitions, marketing and distribution agreements, franchising, co-production agreements, licensing, consortiums and joint ventures. Here we define a strategic alliance as a cooperative agreement between two or more autonomous firms pursuing common objectives or working towards solving common problems through a period of sustained interaction. A distinction is commonly made between 'formal' and 'informal' inter-firm alliances. Informal alliances involve voluntary contact and interaction while in formal alliances cooperation is governed by a contractual agreement. The advantage of formal alliances is the ability to put in place IPR clauses, confidentially agreements and other contractual measures designed to safeguard the firm against knowledge spill-over. However, these measures are costly to instigate and police. By contrast, a key attraction of informal relationships is their low co-ordination costs. Informal know-how trading is relatively simple, uncomplicated and more flexible, and has been observed in a number of industries. A number of factors affecting firms' decisions to cooperate or not cooperate within strategic alliances have been raised in the literature. In this paper we consider three factors in particular: the relative costs of coordinating activity through strategic alliances vis-a-vis the costs of coordinating activity in-house, the degree of uncertainty present in the competitive environment, and the feedback between individual decision-making and industry structure. Whereas discussion of the first two factors is well developed in the strategic alliance literature, the third factor has hitherto only been addressed indirectly. The contribution to this under-researched area represents an important contribution of this paper to the current discourse. In order to focus the discussion, the paper considers the formation of horizontal inter-firm strategic alliances in dynamic product markets. These markets are characterised by rapid rates of technological change, a high degree of market uncertainty, and high rewards (supernormal profits) for successful firms offset by shortening life cycles.Strategic Alliances, Innovation Networks, Self-Organisation

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Multi-robot team formation control in the GUARDIANS project

    Get PDF
    Purpose The GUARDIANS multi-robot team is to be deployed in a large warehouse in smoke. The team is to assist firefighters search the warehouse in the event or danger of a fire. The large dimensions of the environment together with development of smoke which drastically reduces visibility, represent major challenges for search and rescue operations. The GUARDIANS robots guide and accompany the firefighters on site whilst indicating possible obstacles and the locations of danger and maintaining communications links. Design/methodology/approach In order to fulfill the aforementioned tasks the robots need to exhibit certain behaviours. Among the basic behaviours are capabilities to stay together as a group, that is, generate a formation and navigate while keeping this formation. The control model used to generate these behaviours is based on the so-called social potential field framework, which we adapt to the specific tasks required for the GUARDIANS scenario. All tasks can be achieved without central control, and some of the behaviours can be performed without explicit communication between the robots. Findings The GUARDIANS environment requires flexible formations of the robot team: the formation has to adapt itself to the circumstances. Thus the application has forced us to redefine the concept of a formation. Using the graph-theoretic terminology, we can say that a formation may be stretched out as a path or be compact as a star or wheel. We have implemented the developed behaviours in simulation environments as well as on real ERA-MOBI robots commonly referred to as Erratics. We discuss advantages and shortcomings of our model, based on the simulations as well as on the implementation with a team of Erratics.</p

    Self organization of tilts in relay enhanced networks: a distributed solution

    Get PDF
    Despite years of physical-layer research, the capacity enhancement potential of relays is limited by the additional spectrum required for Base Station (BS)-Relay Station (RS) links. This paper presents a novel distributed solution by exploiting a system level perspective instead. Building on a realistic system model with impromptu RS deployments, we develop an analytical framework for tilt optimization that can dynamically maximize spectral efficiency of both the BS-RS and BS-user links in an online manner. To obtain a distributed self-organizing solution, the large scale system-wide optimization problem is decomposed into local small scale subproblems by applying the design principles of self-organization in biological systems. The local subproblems are non-convex, but having a very small scale, can be solved via standard nonlinear optimization techniques such as sequential quadratic programming. The performance of the developed solution is evaluated through extensive simulations for an LTE-A type system and compared against a number of benchmarks including a centralized solution obtained via brute force, that also gives an upper bound to assess the optimality gap. Results show that the proposed solution can enhance average spectral efficiency by up to 50% compared to fixed tilting, with negligible signaling overheads. The key advantage of the proposed solution is its potential for autonomous and distributed implementation

    Protein folding and the robustness of cells

    No full text
    The intricate intracellular infrastructure of all known life forms is based on proteins. The folded shape of a protein determines both the protein’s function and the set of molecules it will bind to. This tight coupling between a protein’s function and its interconnections in the molecular interaction network has consequences for the molecular course of evolution. It is also counter to human engineering approaches. Here we report on a simulation study investigating the impact of random errors in an abstract metabolic network of 500 enzymes. Tight coupling between function and interconnectivity of nodes is compared to the case where these two properties are independent. Our results show that the model system under consideration is more robust if function and interconnection are intertwined. These findings are discussed in the context of nanosystems engineering
    corecore