3,935 research outputs found

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    Full Paper: Digital Resilience in Critical Infrastructures: A Systematic Literature Review

    Get PDF
    In times of disruptive events, effective response by organizations, critical systems, and society is paramount. The response process involves pre-event preparation, impact absorption, and system restoration, which together represent the concept of resilience. Critical infrastructures (CI) are essential to the functioning of society and require a high level of resilience to ensure that they can withstand and quickly recover from disruptive events. With the incorporation of Information Systems (IS) into CI, there is a need to study Digital Resilience to identify potential risks and develop strategies to mitigate them effectively. In this research, we conducted a Systematic Literature Review on Digital Resilience to understand its scope, and classified articles based on their scope, resilience dimensions, and phases they address, as well as interdependence between systems. We aim to contribute to the scientific understanding of Digital Resilience by analyzing existing gaps and proposing possible future research directions. This study provides an overview of the current state-of-the-art, the types of research conducted, and the resulting artifacts. Additionally, it introduces a new area of focus within the field of resilience: Digital Resilience

    Securing industrial control system environments: the missing piece

    Get PDF
    Cyberattacks on industrial control systems (ICSs) are no longer matters of anticipation. These systems are continually subject to malicious attacks without much resistance. Network breaches, data theft, denial of service, and command and control functions are examples of common attacks on ICSs. Despite available security solutions, safety, security, resilience, and performance require both private public sectors to step-up strategies to address increasing security concerns on ICSs. This paper reviews the ICS security risk landscape, including current security solution strategies in order to determine the gaps and limitations for effective mitigation. Notable issues point to a greater emphasis on technology security while discounting people and processes attributes. This is clearly incongruent with; emerging security risk trends, the biased security strategy of focusing more on supervisory control and data acquisition systems, and the emergence of more sector-specific solutions as against generic security solutions. Better solutions need to include approaches that follow similar patterns as the problem trend. These include security measures that are evolutionary by design in response to security risk dynamics. Solutions that recognize and include; people, process and technology security enhancement into asingle system, and addressing all three-entity vulnerabilities can provide a better solution for ICS environments

    Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems: cyber risk at the edge

    Get PDF
    AbstractThe Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture.</jats:p

    Risk assessment methodologies for Critical Infrastructure Protection. Part I: A state of the art

    Get PDF
    Effective risk assessment methodologies are the cornerstone of a successful Critical Infrastructure Protection program. The extensive number of risk assessment methodologies for critical infrastructures clearly supports this argument. Risk assessment is indispensable in order to identify threats, assess vulnerabilities and evaluate the impact on assets, infrastructures or systems taking into account the probability of the occurrence of these threats. This is a critical element that differentiates a risk assessment from a typical impact assessment methodologyJRC.G.6-Security technology assessmen

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    The AQUAS ECSEL Project Aggregated Quality Assurance for Systems: Co-Engineering Inside and Across the Product Life Cycle

    Get PDF
    There is an ever-increasing complexity of the systems we engineer in modern society, which includes facing the convergence of the embedded world and the open world. This complexity creates increasing difficulty with providing assurance for factors including safety, security and performance. In such a context, the AQUAS project investigates the challenges arising from e.g., the inter-dependence of safety, security and performance of systems and aims at efficient solutions for the entire product life-cycle. The project builds on knowledge of partners gained in current or former EU projects and will demonstrate the newly developed methods and techniques for co-engineering across use cases spanning Aerospace, Medicine, Transport and Industrial Control.A special thanks to all the AQUAS consortium people that have worked on the AQUAS proposal on which this paper is based, especially to Charles Robinson (TRT), the proposal coordinator. The AQUAS project is funded from the ECSEL Joint Undertaking under grant agreement n 737475, and from National funding
    • …
    corecore