8,675 research outputs found

    Simulation-based assessment of the stationary tail distribution of a stochastic differential equation

    Get PDF
    A commonly used approach to analyzing stochastic differential equations (SDEs) relies on performing Monte Carlo simulation with a discrete-time counterpart. In this paper we study the impact of such a time-discretization when assessing the stationary tail distribution. For a family of semi-implicit Euler discretization schemes with time-step h > 0, we quantify the relative error due to the discretization, as a function of h and the exceedance level x. By studying the existence of certain (polynomial and exponential) moments, using a sequence of prototypical examples, we demonstrate that this error may tend to 0 or ¥. The results show that the original shape of the tail can be heavily affected by the discretization. The cases studied indicate that one has to be very careful when estimating the stationary tail distribution using Euler discretization schemes

    How close are time series to power tail L\'evy diffusions?

    Full text link
    This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and the law of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as α\alpha-stable L\'evy flights. Coupling distances measure the proximity of the empirical law of the tails of the jump increments and a given power law distribution. In particular they yield an upper bound for the distance of the respective laws on path space. We prove rates of convergence comparable to the rates of the central limit theorem which are confirmed by numerical simulations. Our method applied to a paleoclimate time series of glacial climate variability confirms its heavy tail behavior. In addition this approach gives evidence for heavy tails in data sets of precipitable water vapor of the Western Tropical Pacific.Comment: 30 pages, 10 figure

    A spliced Gamma-Generalized Pareto model for short-term extreme wind speed probabilistic forecasting

    Get PDF
    Renewable sources of energy such as wind power have become a sustainable alternative to fossil fuel-based energy. However, the uncertainty and fluctuation of the wind speed derived from its intermittent nature bring a great threat to the wind power production stability, and to the wind turbines themselves. Lately, much work has been done on developing models to forecast average wind speed values, yet surprisingly little has focused on proposing models to accurately forecast extreme wind speeds, which can damage the turbines. In this work, we develop a flexible spliced Gamma-Generalized Pareto model to forecast extreme and non-extreme wind speeds simultaneously. Our model belongs to the class of latent Gaussian models, for which inference is conveniently performed based on the integrated nested Laplace approximation method. Considering a flexible additive regression structure, we propose two models for the latent linear predictor to capture the spatio-temporal dynamics of wind speeds. Our models are fast to fit and can describe both the bulk and the tail of the wind speed distribution while producing short-term extreme and non-extreme wind speed probabilistic forecasts.Comment: 25 page

    Half-tapering strategy for conditional simulation with large datasets

    Full text link
    Gaussian conditional realizations are routinely used for risk assessment and planning in a variety of Earth sciences applications. Conditional realizations can be obtained by first creating unconditional realizations that are then post-conditioned by kriging. Many efficient algorithms are available for the first step, so the bottleneck resides in the second step. Instead of doing the conditional simulations with the desired covariance (F approach) or with a tapered covariance (T approach), we propose to use the taper covariance only in the conditioning step (Half-Taper or HT approach). This enables to speed up the computations and to reduce memory requirements for the conditioning step but also to keep the right short scale variations in the realizations. A criterion based on mean square error of the simulation is derived to help anticipate the similarity of HT to F. Moreover, an index is used to predict the sparsity of the kriging matrix for the conditioning step. Some guides for the choice of the taper function are discussed. The distributions of a series of 1D, 2D and 3D scalar response functions are compared for F, T and HT approaches. The distributions obtained indicate a much better similarity to F with HT than with T.Comment: 39 pages, 2 Tables and 11 Figure
    • …
    corecore