3,457 research outputs found

    Design Concepts for Automating Maintenance Instructions

    Get PDF
    This research task was performed under the Technology for Readiness and Sustainment (TRS) contract (F33615-99-D-6001) for the Air Force Research Laboratory (AFRL), Sustainment Logistics Branch (HESS) at Wright-Patterson AFB, OH. The period of performance spanned one year starting 29 January 1999. The objective of this task was to develop and demonstrate a framework that can support the automated validation and verification of aircraft maintenance Technical Orders (TOs). The research team examined all stages ofTO generation to determine which tasks most warranted further research. From that investigation, validation and verification of appropriate, safe, and correct procedure steps emerged as the primary research target. This process would be based on available computer-aided design (CAD) data, procedure step ordering from existing sources, and human models. This determination was based on which tasks could yield the greatest impact on the authoring process and offer the greatest potential economic benefits. The team then developed a research roadmap and outlined specific technologies to be addressed in possible subsequent Air Force research tasks. To focus on the potential technology integration of the validation and verification component into existing or future TO generation procedures, we defined a demonstration scenario. Using the Front Uplock Hook assembly from an F/A-18 as the subject, we examined task procedure steps and failures that could be exposed by automated validation tools. These included hazards to personnel, damage to equipment, and incorrect disassembly order. Using the Parameterized Action Representation (PAR) developed on previous projects for actions and equipment behaviors, we characterized procedure steps and their positive and negative consequences. Finally, we illustrated a hypothetical user interface extension to a typical Interactive Electronic Technical Manual (IETM) authoring system to demonstrate how this process might appear to the TO author

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Advanced expander test bed engine

    Get PDF
    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust

    Production optimization of rotavirus-like particles: a system biology approach

    Get PDF
    Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Systems Biology at the Instituto de Tecnologia QuĂ­mica e BiolĂłgica, Universidade Nova de LisboaRotavirus-like particles (RLPs), a vaccine candidate against rotavirus disease, were produced by infecting Spodoptera frugiperda Sf-9 cells with genetically engineered recombinant baculoviruses. RLPs are spherically shaped particles composed by three viral proteins (vp) of rotavirus, vp2, vp6 and vp7, arranged in a triple layered structure. A diversity of protein structures, other than the correctly assembled RLP, are observed at the end of a typical production run suggesting that the protein assembly process is rather inefficient. Contaminants such as trimers of vp6 and vp7, vp6 tube-like structures, single-layered vp2 particles, double layered particles of vp2 and vp6 or RLPs lacking one or more subunits represent almost 88% of the total mass of proteins expressed. Thus, optimal control of protein expression concomitant with efficient particle assembly are critical factors for economical RLP production in the baculovirus/insect cells system

    Space biology initiative program definition review. Trade study 2: Prototype utilization in the development of space biology hardware

    Get PDF
    The objective was to define the factors which space flight hardware developers and planners should consider when determining: (1) the number of hardware units required to support program; (2) design level of the units; and (3) most efficient means of utilization of the units. The analysis considered technology risk, maintainability, reliability, and safety design requirements for achieving the delivery of highest quality flight hardware. Relative cost impacts of the utilization of prototyping were identified. The development of Space Biology Initiative research hardware will involve intertwined hardware/software activities. Experience has shown that software development can be an expensive portion of a system design program. While software prototyping could imply the development of a significantly different end item, an operational system prototype must be considered to be a combination of software and hardware. Hundreds of factors were identified that could be considered in determining the quantity and types of prototypes that should be constructed. In developing the decision models, these factors were combined and reduced by approximately ten-to-one in order to develop a manageable structure based on the major determining factors. The Baseline SBI hardware list of Appendix D was examined and reviewed in detail; however, from the facts available it was impossible to identify the exact types and quantities of prototypes required for each of these items. Although the factors that must be considered could be enumerated for each of these pieces of equipment, the exact status and state of development of the equipment is variable and uncertain at this time
    • …
    corecore