99,535 research outputs found

    Simulation-Based Performance Analysis and Tuning for a Two-Level Directly Connected System

    Full text link
    Hardware and software co-design is becoming increasingly important due to complexities in supercomputing architectures. Simulating applications before there is access to the real hardware can assist machine architects in making better design decisions that can optimize application performance. At the same time, the application and runtime can be optimized and tuned beforehand. BigSim is a simulation-based performance prediction framework designed for these purposes. It can be used to perform packet-level network simulations of parallel applications using existing parallel machines. In this paper, we demonstrate the utility of BigSim in analyzing and optimizing parallel application performance for future systems based on the PERCS network. We present simulation studies using benchmarks and real applications expected to run on future supercomputers. Future petascale systems will have more than 100,000 cores, and we present simulations at that scale

    Dynamics estimation and generalized tuning of stationary frame current controller for grid-tied power converters

    Get PDF
    The integration of AC-DC power converters to manage the connection of generation to the grid has increased exponentially over the last years. PV or wind generation plants are one of the main applications showing this trend. High power converters are increasingly installed for integrating the renewables in a larger scale. The control design for these converters becomes more challenging due to the reduced control bandwidth and increased complexity in the grid connection filter. A generalized and optimized control tuning approach for converters becomes more favored. This paper proposes an algorithm for estimating the dynamic performance of the stationary frame current controllers, and based on it a generalized and optimized tuning approach is developed. The experience-based specifications of the tuning inputs are not necessary through the tuning approach. Simulation and experimental results in different scenarios are shown to evaluate the proposal.Peer ReviewedPostprint (published version

    Generalized Network Psychometrics: Combining Network and Latent Variable Models

    Full text link
    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of Structural Equation Modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework Latent Network Modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance-covariance structure of indicators is modeled as a network. We term this generalization Residual Network Modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms performs adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.Comment: Published in Psychometrik

    Agile Calibration Process of Full-Stack Simulation Frameworks for V2X Communications

    Get PDF
    Computer simulations and real-world car trials are essential to investigate the performance of Vehicle-to-Everything (V2X) networks. However, simulations are imperfect models of the physical reality and can be trusted only when they indicate agreement with the real-world. On the other hand, trials lack reproducibility and are subject to uncertainties and errors. In this paper, we will illustrate a case study where the interrelationship between trials, simulation, and the reality-of-interest is presented. Results are then compared in a holistic fashion. Our study will describe the procedure followed to macroscopically calibrate a full-stack network simulator to conduct high-fidelity full-stack computer simulations.Comment: To appear in IEEE VNC 2017, Torino, I
    corecore